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The problem of calculating particle trajectories on unstructured meshes using a
high-order polynomial approximation of the velocity field is addressed. The calcu-
lation of the particle trajectory is based on a Runge—Kutta integration in time. A
convenient way of implementing high-order approximations is to employ an auxil-
iary mapping that transforms a finite element into a topologically equivalent parent
element within a normalized parametric space. This presents two possible choices
of space in which to perform the time integration of the particle position: the phys-
ical space or the parametric space. We present algorithms for implementing both
particle tracking strategies using high-order elements and discuss their merits. The
main drawback of both methods is their reliance on nonlinear procedures to calculate
the particle trajectory. A novel alternative hybrid approach that advances a particle
in both the physical and the parametric space without requiring nonlinear iterations
is proposed. The error introduced by the alternative linearized procedures and their
effect in the rate of convergence of the time integration is discussed. Finally, the
performance of the different algorithms is compared using a set of analytical and
computational, linear and high-order, velocity fieldsg 2001 Academic Press
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1. INTRODUCTION

Computer visualization is a powerful tool for the processing and interpretation of t
large amounts of geometrical and flow field data currently produced in computational flt
dynamics (CFD) simulations. It permits comparisons between computational and exp
mental data and eases the identification of important flow features such as vortical flo
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stagnation regions, and characteristic flow lines. A review of scientific visualization appli
to CFD until 1990 is presented in [4].

The emphasis of this paper is on the integration of particle paths using CFD data fr
unstructured high-order finite element/spectral solvers. The calculation of particle paths
useful visualization technique for understanding flow behavior. It is also as an integral |
of Lagrangian and semi-Lagrangian CFD flow simulations of non-Newtonian fluids whe
the modelling of history effects such as exposure to shear stresses is important. Exan
of such fluids can be found in [10].

Particle tracking for both structured and unstructured meshes is available in the majc
of packages for scientific visualization, e.g., Visual3 [6], PLOT3D [15], AVS [14], Tecplc
[1], and OpenDX [7] to name but a few. These methods typically assume a piecew
linear representation of the velocity field. A good review of the work on particle trackir
for such representations is given by Darmofal and Haimes in [3] where they comp
multistep and multistage methods for time integration and discuss their accuracy, stabi
and performance.

Although high-order polynomial approximations of the velocity field are common i
finite element simulation of incompressible flows, the problem of calculating flow lines f
these high-order representations has received little attention to date. Two early exampl
particle tracking for high-order elements can be found in the literature of non-Newtoni
flows [5, 13]. These references deal with the numerical simulation of two-dimensiot
non-Newtonian flows using constitutive equations for the stress tensor based on the s
history calculated along streamlines. The integration in time is accomplished using
standard fourth-order Runge—Kutta method. This time integration is applied in physi
space with a quadratic approximation of the velocity on a triangular mesh in [13]. Referel
[5] performs the time integration on the parametric space of the parent element us
unstructured quadrilateral meshes with a quadratic approximation of velocity. A Newtc
Raphson iteration is applied to find the intersection with boundaries. Neither of these arti
include detailed information on the implementation of the particle tracking method.

The approximation of a high-order velocity field by piecewise linear polynomials ar
the use of a standard patrticle tracking algorithm might not result in an accurate calcula
of the trajectories. Streamline integration is very sensitive to small changes in kinemat
Inconsistencies between the high-order velocity field and a linear representation m
result in kinematic changes that could have a significant effect on the pathlines in comy
regions which are very sensitive to the spatial resolution, such as recirculation cells. T
is highlighted in Fig. 1 which compares the particle traces for a high-order velocity fie
calculated by the commercial package Tecplot [1] and the algorithm proposed in this pa
The streamline is computed by Tecplot using a linear interpolation between points.
inconsistency between the two approximations leads to a linearly interpolated stream
that differs form the high-order one in the recirculation cell. Figure 1 shows the whc
domain on the left and two views of the junction to highlight the diverging streamlines.

The layout of this paper is arranged as follows. The basic notation for the descript
of finite element representations of velocity fields and multistage time integration is int
duced in Section 2. Section 3 presents two strategies for nonlinear particle tracking u:
high-order elements and their implementation. Section 4 presents an alternative hy
approach that advances a particle across elemental boundaries without resorting to nc
ear iterations: thguided searchlt discusses its accuracy and implementation, and prc
poses various viable schemes for particle tracking which employ the guided search. Fin
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FIG. 1. Streamlinesin ajunction between two straight pipes. The high-order finite element mapping is ba
on a seventh-order polynomial expansion and the corresponding streamline is represented by the dotted line
solid line is the streamline starting at the same point as calculated by the commercial package Tecplot us
subdivision of the mesh of high-order elements into linear elements. (Remark: One high-order element was div
into 84 linear elements).

Section 6 presents some examples of application of the proposed algorithms to both
lytical and computational velocity flow fields and within a complex curvilinear geometri
model.

2. PARTICLE TRACKING: PROBLEM DEFINITION

The problem of finding the trajector(t) of a particle is formulated as a set of ordinary
differential equations

dx

— =u(x,t), 1

4 =ueD (1)
wherex is the position in space ands the velocity field. This simply states that the tangent
to the trajectory curve at a point of coordinateis parallel to the velocity at that point.
The initial condition for this problem amounts to specifying the posikgof the particle

at a specific timet, =to, i.e.,

X(to) = Xo. 2

2.1. Numerical Representation of the Velocity Field

The velocity fieldu is generally not available analytically but through a discretized form
In the finite element method, this field is defined as a piecewise continuous expansion
elemental regions. In this paper we shall consider flow fields generated by both linear
high-order spectratp element methods.
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Before dealing with the problem of integrating Eqg. (1) in time using a finite eleme
representation of the velocity field, we will introduce some basic nomenclature relating
the finite element method.

2.1.1. Isoparametric finite elementdn a general finite element formulation the com-
putational domai2 is divided intoNe nonoverlapping subdomaii#®, or finite elements,
such that

Q= UQ¢ e=1,..., Ng,

and which are topologically identified with triangular and quadrilateral subdomains
two dimensions and tetrahedral, prismatic, pyramidal, and hexahedral subdomains in t
dimensions.

It is standard practice to map a subdomain or elenfehtin physical spacex =
(X1, ..., Xn), Wheren denotes the number of dimensions, onto a straight-sided subdom:
in¢ = (¢1, ..., ¢n) with the same topology but fixed dimensions, calledtheent element
This operation is illustrated in Fig. 2 where a generic high-order element (solid line) a
a linear element (dashed line) are drawn for comparison. In both cases, the mapping
homeomorphism between the element in the physical space and the parent element
can be expressed by the analytical mapping in

x=x%(Q), 3)
and the corresponding inverse, typically nonanalytical, mapping will be denoted by
¢=TXx). 4)

A significant difference between linear and high-order (nonlinear) elements is that
mapping for linear elements has an analytical inverse while for the high-order elements,
inverse of the nonlinear mapping has to be determined iteratively, in general.

1 1 High—order
- §
C g,
1
5
A’ B’
Parametric space Physical space

FIG 2. Two-dimensional isoparametric mapping between the physical and the parametric spaces. The triz
ABCon the right is in the physical space and the tnangIB C'’ is its projection in the parametric space known
as the parent element. The dashed lines represent trlmﬁﬂr}wnh straight sides.
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In the isoparametricapproach the coordinate system is expressed as a mapping
symbolically written as

X= Z§<|¢|(C)» (5)
|

whereg¢, represents a member of a complete family of polynomial expansion baies,
the vector of physical space coordinatéss the vector of local Cartesian coordinates in
the parametric space, and the quantifiesepresent the expansion coefficients. If a noda
expansion is used where the bagishas the Kronecker delta property

1 ifl=J

0 ifl#J ©)

o ()A(J)Z{

then the expansion coefficie®scoincide with the physical coordinates of the mesh node
X;. The vector field is approximated in a similar fashion as

uex, b ~ Gx@©), H =Y 00 (), (7)
|

where the quantitie8, denote the expansion coefficients representing the velocity.

Over the parent element, the shape functions can be represented as a sum of a
number of polynomials (the expansion basis), whose number and shape depend or
topology of the subdomain and on the required polynomial order of the expansion. |
instance, the linear polynomial expansion basis on a triangular region consists of tt
linear polynomials. Each polynomial is associated to a different vertex of the triangle w
a value of 1 at that vertex and a value of 0 at the other two vertices.

2.1.2. Spectral/hp element method\n important feature of a high-order unstructured
formulation is computational efficiency. The efficient construction of an expansion basis
an unstructured subdomain can be achieved through the introduction of a new coordil
system, referred to aauxiliary spaceor collapsed coordinate systefhl]. The mapping
between the parameteric space identified by the local Cartesian coordjnaied the
auxiliary space represented hy,is denoted by

¢=Cm. (8)

A two-dimensional example of this mapping is depicted in Fig. 3.

The advantage of such auxiliary mapping is that the local coordinpt® now de-
fined in a square regionl < n; < 1. This permits the definition of an expansion basis as
generalized tensor-product of one-dimensional expansions which can be evaluatedin a
putationally efficient manner. The approximation of the velocity within a two-dimension
element is given by

ue[Xe(C)] = Z lt'pq‘l; pq(fl, L) = Z ﬂpqd’p(’)l)d’pq(’lz), (9)
p.q p.q

whereg (1) andgpq(n2) represent appropriate one-dimensional polynomiajs andn.,
respectively. Alternatively, the approximation can also be written in terms of the Lagran
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FIG.3. Two-dimensional example of the various mappings involved in the interpolation of functions using u
structured high-order spectriai elements. The mapping between the physical and parametric spaces correspc
to the standard isoparametric finite element representation. The mapping between the auxiliary and paran
spaces is characteristic of the spectrplélement approach and is introduced for computational efficiency.

polynomial as

U] = ) Upghp(hq(r2), (10)
p.q

wherehy (1) andhg(n2) are the Lagrange polynomials through a set of points typicall
chosen to be the quadrature points. In this representation the coeffigigat® the solution
values at the quadrature points resulting from the Kronecker Delta nature of the Lagra
polynomial basis. This form is particularly convenient for interpolation where the Kroneck
Delta leads to implementation efficiency.

The new coordinate system introduces a singularity where the Jacobian of the inve
transformation,

n=n(C), (11)

can be multivalued but the coordinates are well-defined and bounded over the sing
region [11]. The main advantage of this generalized tensor-product formulation is that,
using a sum factorization technique [11], the evaluation of expression (9) at a sefiés of
quadrature points requires on(P3) operations in 2D, an@(P*) in 3D, if ¢(171) and
¢pq(n2) are polynomials of ordeP. A straightforward evaluation would have resulted in
an operation count o®(P#) in 2D andO(P®) in 3D.

2.2. Time Integration Schemes

There are two main types of integration schemes for ordinary differential equatio
multistage methods (mainly Runge—Kutta type), and multistep methods. The literature
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the subject suggests, e.g., [9], that multistep methods are more efficient and accura
problems where the velocity field is smooth. However, they require a start-up proced
and their time step cannot be changed easily. On the other hand, a multistage algorithm
not require a start-up procedure, the time step can be changed easily and is very ro
However, it is computationally more expensive, since it requires more function evaluatio
Given that the velocity fields in our work are defined in a piecewise continuous fashi
and might represent sharp velocity gradients, even flow discontinuities, we have chose
adopt the Runge—Kutta schemes because of their flexibility and robustness.

The application of ars-stage explicit Runge—Kutta method to the general system ¢
ordinary differential equations

dy
— =f(y,t 12
gt =00, (12)
with the initial conditions
y(to) =Yo, (13)
results in the iteration
S
y"™=y"+ ALY bif, (14)
i=1
wherey" denotes the valug(t"),
i—1
i:f<y“+AtZa;jfj,t“+ciAt), (15)
j=1

s is the number of stages and is the time step. The valuéds, ¢, anda;; are the entries
of the correspondingutcher array{9]:

Ci| a1 -+ Qs
. . . (16)
Cs| @1 ... @ss _

‘ by -+ b

The coefficients of this array define the particular scheme employed and are given, for
schemes employed in this paper, at the end of this section.

The second term on the right-hand side of Eq. (14) is a weighted average of thefvalue
taken at each stage. Hence, if we set

f= Z bifi, (17)
i—1

then a generic Runge—Kutta scheme, as represented by Eq. (14), can be considerec
Euler scheme that marches in time using an averaged valueThe same consideration
can be applied to each stage, hence the second term on the right-hand side of Eq. (15
be considered as an Euler step taken with average velocity

i—1
fi=Za,-jfj. (18)
j=1
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FIG. 4. Interpretation of the Runge—Kutta integration as a series of Euler steps using a suitably avera
velocity. The figure shows the steps for a three-stage scheme.

This interpretation of the Runge—Kutta scheme is depicted in Fig. 4 for the three-st
scheme which shows how each stage of the Runge—Kutta integration can be envisag
a Euler step in the direction of an suitably averaged velocity. We will use this interpi
tation as the basis for thguided searctalgorithm which will be developed in the next
sections.

Four Runge—Kutta integration methods have been investigated in this paper which pro
a wide range of orders of accuracy. These are the following:

1. RK1: A single-stage scheme, the Euler method. The entries of its Butcher array
Eq. (16) are
0]

RE 49

o

2. RK2: A two-stage scheme, the improved Euler method, with Butcher array entrie:

0

=
=

(20)

3. RK3: Athree-stage scheme, Kutta'’s third-order formula, with a Butcher array given

1
2

NI

NI

(21)

= N O
|
|_\

win| N

| .

1
6

[l

4. RK4: A four-stage scheme, the classical Runge—Kutta method, with Butcher ar
entries:

(22)

= NI N O

okl O O NIk
wk| O NIk
Wik |

Dl
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3. PARTICLE TRACKING FOR HIGH-ORDER ELEMENTS

There are two possible strategies for tracking particles depending on the space in wi
the time integration is performed. The first strategy is to perform the time integration
the physical space. Given the piecewise continuous definition of the flow field, this proc
involves searching for the element containing the point where the velocity is to be evalua
followed by the interpolation of the velocity using the expansion basis within the eleme
The two computationally intensive operations to be performed are:

(i) anonlinear iterative procedure to find the local coordingtsthe parametric space
from the Cartesian coordinatgsn physical space, and
(i) the interpolation of the velocity at a point of parametric coordinatés

The second strategy performs the time integration in the parametric space. The pro
involves advancing the particle within an element using a transformed velocity field
the parametric space until the particle reaches the element boundary. The process is
continued in the neighbor element sharing the boundary where the particle exits. The
main operations to be performed are:

(i) theinterpolation of the velocity, at a point of coordinate$in the parametric space,
and

(i) anonlinear iterative procedure to find the intersection of a pathline with an elemen
boundary.

The computational cost of either integration scheme can be very high when appliec
the calculation of particle trajectories on a high-order flow field. We therefore wish
devise efficient algorithms which take into consideration the computational cost of spa
interpolation and nonlinear mappings.

3.1. Particle Tracking in the Physical Space

We recall that the explicit Runge—Kutta scheme (14) applied to the particle trajectc
equation (1) results in

S
xML=x"+ At by (23)
i=1

where

i-1
Ui=U<Xn+AtZaijUj,tn+CiAt>. (24)
=1

For a fixed time stept, the iterative algorithm at a certain stagecan be summarized
as follows:

1. Find the local coordinates, (point P’ in Fig. 5) corresponding to the coordinates
Xn of the current position (poin® in Fig. 5) using the inverse iteration to be discussed ir
Section 3.1.1.

2. Interpolate the velocity field at point¢, using Eq. (10).

3. Apply the time integration scheme represented by Egs. (23) and (24), to find the
position coordinates,.1 (point Q in Fig. 5).

4. If the stopping criterion is satisfied then exit, or elsenletn + 1 and return to step 1.
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FIG.5. Particle pathsin the parametric and physical spR@ndQ are the particle starting and next positions
in the physical space, respective}.andQ’ are their images in the parametric spaeéis the intersection point
with the elemental boundary. Triangl@s/B’\C’ and B'AD’ are the images in the parametric space of triangles
ABCandBAD.

In the case of linear elements, this procedure is quite efficient since the inverse map
¢ =P(x), used in step 1 and every substep of step 3, is analytic. However, for curviline
high-order elements the computational expense is significantly higher because of the
of the nonlinear iteration required to calculate the inverse mapping. This is describe
Section 3.1.1.

3.1.1. Inverse mapping.The finite element representation of the velocity field is piece
wise continuous. Therefore, the evaluation of the velocity at a point in physical space
volves two steps: finding the element that contains the point, and interpolating the velo
using the elemental expansion coefficients and polynomial basis in Eq. (10).

The first step is a range searching problem which is solved by a trial and error procec
because the element to which the poirttelongs is not explicitly known. Each element
in the mesh is assigned a bounding box that encloses the element. An initial guess o
element containing the point is obtained by searching through the element bounding b
to find one that contains the desired point. This is followed by the calculation of the lo
coordinateg in the parametric space of the element associated to the current bounding |
If the calculated local coordinates are outside the limits of definition of the parent eleme
the rest of the bounding boxes are investigated, until the element containing the poir
found.

The efficiency of the searching procedure can be improved by using appropriate c
structures. If the number of elements in the mesh is large, tree structures [2] could be |
to find the element containing the starting point of a trajectory. For other points along
trajectory, it is generally more efficient to start in the element containing the position at 1
previous time step and then perform the search in the neighborhood of that element u
an element-to-element connectivity data structure.

The computation of the local coordinates forear elements is relatively inexpensive
since an analytical expression for the inverse mapping (4) is available. Unfortunately,
analytical expression of the inverse mapping (4) is not available, in the general case
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high-orderelements and, because of the nonlinearity of the problem to be solved, anitera
procedure such as a Newton—Raphson iteration [8] has to be applied.

For instance, if we would like to determine the coordingteuch thaty®({) =x, we
could formulate this as the problem of finding a zero of a funckdqg), where

F(O=x%(Q) —x. (25)

The Newton—Raphson iteration applied to Eq. (25) can be written as

Je - [Cit1—Cil= —F(C), (26)
wherei represents an iteration counter ahdlenotes the Jacobian of the mapping

oF 9x°®
Je=—=—-. 27
=3¢ =3¢ (27)

A good strategy to identify the nearest elements isimportant because of the computatit
expense of this iterative procedure that requires interpolation of the n%{xtrinhich has
nine entries in 3D. Since the interpolation involves polynomial evaluation, we also note tl
the computation time will increase with the polynomial order of the mapping.

3.2. Particle Tracking in the Parametric Space

This section describes an alternative method for advancing a particle along a trajec
that avoids the expensive calculation of the local coordinates through the iterative solutio
Eq. (25). Rather than considering the rate of change of the position of a particle in phys
space as described by Eqg. (1), we can map the velocity field onto the parent elemel
obtain an equation representing the corresponding rate of change of the particle positic
the parametric space within elemerds

a¢® .
— =Uu;(¢,t). 28
The transformed velocity; in the parent element can be evaluated in terms of the physic
velocity u by applying the chain rule to each of its scalar components, i.e.,
. dx 09X dz;  ox dg,  9x dgs

9N oA e | O He2 | OAHSs L g 5 3 29
Y=t agldt+a§2dt+8§3dt =553 (29)

which can be written in matrix form as

X e 1.4e
u=¥u§=\]eu{, (30)
whereJ, is the Jacobian of the mapping between elengeand its parent element. The
final expression for the transformed velocity in the parent element is

e_d¢® _

f=gr = Jtu. (31)

u

This equation can only be applied within the corresponding elemental region since the |
resentation of the velocity field, and consequently the JacdSjas piecewise continuous.
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However, if we can determine the intersection of the particle trajectory with the boundary
the parent element, then the continuity of the local coordinates along a boundary can be
to advance the particle to the next adjacent element. This strategy leads to the pararn
space patrticle tracking which is described in the following.

Omitting the indexe for simplicity, the use of as-stage Runge—Kutta for the integration
in time of Eq. (28) leads to

S
¢"Mr=(¢"+ ALY biug, (32)
i=1
where
i—1
Uzi=U:<C”+Atza@ju§j,t“+qm>. (33)
j=1

The starting point of the algorithm for this strategy requires the calculation of the loc
coordinateg, of the initial position of the particl&y using the inverse iteration described
in Section 3.1.1. At a later stageof the iterative procedure, and using a fixed time stej
At, the algorithm can be summarized as follows:

1. interpolate the velocity field and the Jacobiah at the point,,, within elementg”,
to evaluatau, (¢,) using Eq. (31).
2. Apply the time integration scheme, given by Egs. (32) and (33), with timesstep
determine a new positiogy, ;.
3. Consider the point of local coordinai€s, ;:
(i) if the point is interior to elemerd”, taket"! =t" 4 At, letn=n+ 1, and go to
step 1, otherwise
(i) if the point is outside the elemef, find the intersection of the trajectory with
the boundary,,,; (point P” in Fig. 5) using the algorithm described in Section 3.2.1. The
corresponding time increment required to reach the boundary isxow At and the
following steps are:
a. find the adjacent elemedtt! that shares the boundary point wahusing the
element-to-element connectivity information,
b. determine the matching local coordinatgs, in the adjacent elemest*1,
c. taket"™1=t" 4+ Ar,letn=n+ 1 and go to step 1.

From an initial inspection of this algorithm, it is apparent that advancing the particle
the parametric space has eliminated the nonlinear inverse mapping evaluation discuss
Section 3.1.1. We are however now faced with the problem of determining the intersec
of the trajectory with the boundary of the parent element. If we use an Euler schenig,(
the intersection with the boundary is easily determined since it is linearly dependent
At. However, for a multistage schenge> 1) if a particle crosses the boundary we note,
by inspection of Egs. (32) and (33), that the pajfit! is also a nonlinear function of the
timestep. This means that the calculation of the time atepequired to move the particle
exactly to the boundary is a nonlinear problem that has to be solved iteratively. The nee
determine the boundary intersection arises from the discontinuous behavior of the eleme
Jacobian which results in changes of direction of the local velagitgcross elements.
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In the following section, we will discuss two techniques to solve the nonlinear proble
of finding the time step\t and the intersection between the trajectory and the bounda
of the parent element. For a given problem, the effectiveness of this approach decreas
the size of the mesh, and consequently the number of intersections with elemental bo
aries, increases. This approach is therefore more suitable to be used in conjunction
p-refinement.

3.2.1. Boundary intersection.The integration in the parametric space must take intt
account particles leaving an element through an elemental boundary as shown in Fig. !
a two-dimensional case. In two dimensions, the boundaries are edges and vertices. We
not consider vertices as separate boundaries, since they correspond to the intersecti
two edges. In three dimensions the boundaries are faces, edges, and vertices. Similarl
will consider only faces, since edges and vertices are the intersection of two and three fe
respectively.

The boundary through which a particle leaves is easily identified since the coording
of the intersection will lie within a predefined distance from a line or plane in the eleme
tal boundary. This is discussed in more detail in Section 4.3. The problem of determin
the time stepAt required for a particle to hit a boundary is more difficult because th
Runge—Kutta coefficients are nonlinear functions of the time step as shown in Egs. (14)
(15). In a high-order method, the interpolation of the velocity field within an element is
expensive operation, and itis therefore important to use a method with a good rate of con
gence to reduce the number of velocity evaluations. We have implemented the quadratic
convergent Newton—Raphson and Steffensen’s methods [8] to solve this problem.

Let us consider the simple case of triangular elements as an example. If the part
crosses the lower boundary of the parent element, i.e., the Bd§eas shown in Fig. 5,
then we know that, = —1. Substituting this value in the second component of Eq. (32
the time stepAt required to exactly reach the boundary is obtained as the solution of t
equation

S
G1(¢" AT) =142 + AT ) biug, =0. (34)
i=1
Notice that sincel,,; = Ui (A1) through Eq. (33), the functioB, is nonlinear inAz. If a

particle crosses the diagonal edge of the parent element, i.e., thédddgm Fig. 5, then
&1+ £2=0and Eq. (32) will now read

2 s
Go(¢" AT) =) <;£ +ATY by u;ki> =0. (35)

k=1 i=1

Finally, the functional equation for a particle crossing the vertical boundary of the pare
elements; = —1,is

S
Gs(¢". AT)=1+¢] + AT Y bt =0. (36)
i=1

Therefore, the calculation of the time st&qr required for a particle to hit a boundary
requires the solution of the equati@ (¢", At) =0 where the index depends on the
boundary which the particle will intersect.
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Newton—Raphson methot@ihe application of this method to the solution of Egs. (34)
(35), or (36) results in the iterative procedure

Gi (Cn’ ATI)

AT = Al - 25— 7
Gi(¢", Atl)

(37)

whereG; denotes the derivative of the functi@ with respect taAr, andj represents the
iteration index.
For triangular regions the derivatives of Egs. (34), (35), and (36), are

1¢, AT = Z biug, + At Z by ——= d“Q' (38)

i=1

GL(¢", AtTh) = Z (Zb Ugi + At Zb 0y ) (39)

k=1
d
GL((", Atl) = Zbuh. +Aer ”“' (40)
i=1
Following the notation of Eq. (33), we have
Ugi (At)= Ug, (CEI > tin> > (41)
with
i—1
(AT =0 + AT Y ajuy;: tN(ATD) =t"+GAT (42)

j=1
and the derivative afi,; with respect taAr is calculated as

dU;ki _ BU{ki 3tin BUCki Bg“,?,
dAT " AT 3] dAT

8u€kl 8u{kl uIkJ
= atlﬂ Gi a§k| Z a'] uCkJ + At Z ai] IA . (43)

Each Newton—-Raphson step requires the evaluation of both the velocity and its grad
three times. This involves the calculation of the gradient and then its interpolation.

Steffensen’s metho@his scheme requires only function evaluations, is quadraticall
convergent as the Newton—Raphson method and, applied to the system of Eqgs. (34)-
leads to the iterative sequence

[Gi(¢", At))]?
Gi(¢", ATl + Gi(¢", Atl)) = Gi(¢", Atl)’

ATt = A7l — (44)
This method is computationally less expensive than the Newton—Raphson iteration sin
requires only function evaluations.

Treatment of singularitieBoth schemes will quadratically converge to the nearest roc
if the initial guess is sufficiently close and if the behavior of the function near the root
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smooth. This might however present problems if the elemental region is very distorted :
sampling of the velocity is required outside the element. The presence of large distorti
could result in the Jacobian matrix of the mapping, and therefore the local velociti
being ill-behaved outside the parent element. Further the use of the auxiliary mapping v
its collapsed coordinate system in the spectral approach introduces a singularity in
interpolation coordinates (see Fig. 3). Although the Cartesian parametric coordinates a
analytic within the element, the numerical evaluation of the local velocity becomes very |
defined in the vicinity of the singular point of the mappifig> 7. Alternative polynomial
representations could be used that do not introduce such geometrical singularity, but
not clear that they could guarantee a well-behaved approximation for curvilinear eleme
outside their domain of definition. The nonlinearity of the iterative process and the poten
misbehavior of the root-finding procedure make this approach unsatisfactory and lead
consider an alternative treatment: a hybrid approach based on a guided search.

4. GUIDED SEARCH APPROACH TO PARTICLE TRACKING

The previous sections have highlighted several problems in the implementation of
particle tracking algorithm in the physical and parametric spaces. Both strategies sf
weak points when dealing with high-order elements. The main weakness of the phys
space approach is the need to solve the nonlinear inverse mapping problem at each ste
substep of a multistage scheme. This deficiency was overcome by using a time integre
scheme in the parametric space but at the expense of requiring the solution of the nonli
problem of finding the intersection of the trajectory with the elemental boundary.

To overcome these problems and improve efficiency we propose a hybrid appro
where the velocity is predominantly evaluated in physical space but the substeps uti
the parametric space. Such an approach eliminates the inverse mapping iteration at
substep although, as we shall demonstrate, it does introduce an error associated wit|
variation of the Jacobian of the mapping.

As a starting point we note that the Runge—Kutta scheme for the physical space par
tracking given by Egs. (23) and (24) can be equivalently written as

X" = x" 4+ AtU (45)

U= ZS: biu; (46)
=1

Ui = lI.I(Xi,tn + G At) (47)

X, = X" + AtU; (48)

Ui =ia;uj- (49)
j=1

Let us return to the point discussed in Section 2.2, i.e., that each step of the Run
Kutta scheme can be considered as a linear step based on an average velocity (see F
in the context of the physical space particle tracking. As discussed in Section 3.1,
computational difficulty of this scheme is due to the nonlinear iteration needed to evaluate
local parametric coordinatéS™ and¢;, the images in the parametric space of the physice
coordinatex"*! andx;, respectively, which are necessary to interpolate the velocities.
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the hybrid algorithm, we replace Eqg. (45) by the substeps:

Qe =¢" (50a)
(Qeksn = Te{ (et + (ATI NegU} k=1,....Ne—1 (50Db)
¢" = (Cemy + (ATI ey U (50c)
XM= x (™. (50d)
Heree(k); k=1, ..., Nedenotes the list of elements crossed by a particle during the guid

search; the symbalf )¢, indicates that the quantity is evaluated within elemeetk); Ne
is the number of such elements; and

T Qe = (Qektn) (51)

represents a mapping of local parametric coordinates across elemental boundaries.
continuity of position across boundary faces can be expressed as

XD (T (et ) = X (Cete)- 52)

The elemental time sted&\ 7)) are such that

Ne

Z<Af>e(k) = At. (53)

k=1

In a similar fashion, Eq. (48) is replaced by the substeps:

(Qlewy =¢" (54a)
(©etrn = T (Qeto + (ATI NepoUi} k=1,...,Ne—1 (54b)
Gi = (Qetng + (ATI Moy Ui (54c)

Xi = x () (54d)

In this manner we advance the parametric coordinates rather than the physical coordir
thus circumventing the need for the inverse mapping. Interpreting the trajectory given
Egs. (45) and (48) as a straight line in the direction of an average velocity simplifies
problem of calculating the parametric coordinate of the intersection with the parent elerr
boundary since it is now linear and can therefore be evaluated easily. We shall refer to
process as guided searchA complete description of this step is given in Section 4.1. Ar
outline of this algorithm follows.

The starting point of this procedure is, in common with all the procedures, the calculat
of the local coordinateg, of the starting positiomg. At a later stage of the iteration, this
strategy can be summarized as follows:

1. Interpolate the velocity field and Jacobian matrix at pdintwithin elemente(n)
using Eg. (10).
2. Apply the time integration scheme based on the physical space integration as follc

(i) For each substep of the Runge—Kutta scheme:
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a. evaluate the average velocity in physical space based upon Eq. (49),
b. advance the parametric and physical coordingt€s using the guided search
Egs. (54a)-(54d), and
c. evaluate the intermediate physical velocities and Jacobians using Eq. (10).
(i) Compute the final average physical velocity using (46).
(iif) Compute the position of the particle in the physical and parametric sp&EGe
using the guided search Egs. (50a)—(50d).

It is also possible to advance Eqgs. (45) and (48) concurrently with the guided sea
Egs. (50a)—(50d) and (54a)—(54d) to act as an error check. This point will be discus
further in Section 4.2.

4.1. Guided Search Algorithm

Theguided searclallows a particle leaving an element to be traced without resorting t
an iterative procedure. The idea behind this approach is based upon the observation that
stage of the Runge—Kutta scheme can be considered as a linear substep. In this app
we take a series of linear substeps in the parametric space instead of a linear subst
physical space. This point is illustrated in Fig. 6 where we consider a step starting at p
P in the physical space. A linear step in physical spage=vAt would take the particle
to point Q. We then require the local parametric coordinate of pQirih order to proceed.

In the guided search, the parametric pdiis advanced by a linear substag = v, Atg,
based on the local parametric veIocily:nglv. In general, the point will not remain
within an element. The time taken for the point to meet a boundary of the parent elem
(point R" in Fig. 6) is thenAte, < At. Since the step is linear and the boundary is planal
the intersection can be evaluated analytically. To complete the guided search, the Jacc
matrix is then evaluated at poif® in elemente, and a new parametric velocity = nglv

Ay B! B) D’

FIG. 6. lllustration of the guided search algorithm. The ved®® represents the step in the physical space
parallel to the global averaged velocity evaluated aP. The straight segmen®' R, R'S, andST’ are steps
in the parametric space parallel to the transformed velagity Jvp. The local velocityv, is evaluated at the
pointsP’, R, andS for elements,, e,, ande;, respectively. The patk RSTis the image in physical space of
the piecewise linear steps taken in the parametric space.
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is determined. The point is then linearly advanced through elemenier a timeAr,,
which is evaluated as the time for the particle to re8ctSince the total timestep has not
been completed yet, the Jacobian matrix is evaluated at Sointelemente; and the new
parametric velocity, = J;31v is determined. The particle is then linearly advanced a tim
ATtg,, such thaiAt = Ate, + ATe, + AT,

This procedure drastically reduces the computation time required to trace a particle
overcomes the problems posed by the iterative solution of the nonlinear problems assoc
with the two previous particle tracking strategies. The guided search is exact when applie
elements with a constant Jacobian but an error arises when the trajectory crosses elet
with varying Jacobian. This will be explained in the next section. Typically, high-orde
schemes use linear element mappings when dealing with straight-sided elements ar
varying Jacobian are usually associated with curvilinear elements.

4.2. Accuracy of the Guided Search Scheme

To assess the errors introduced by the guided search, the substeps of the hybrid Ru
Kutta scheme should be interpreted in the physical space. For the hybrid scheme to be €
we require Eq. (45) to be equivalent to Egs. (50a)—(50d). In this section we will show tl
this is satisfied when the mapping between the parametric and physical spaces is line:

The proof that Egs. (50a)—(50d) are equivalent to expression (45) for a linear mapg
proceeds as follows. For a linear mapping, the Jacobian within an elersscgnstant and
the coordinate transformation can be written in incremental form as

X°(AQ) =JeAC. (55)
Substituting Eqg. (50c) into (50d) we have
XM= ) (" = M ((Qeng + (ATI ey G)
Using the linearity of the map and expression (55), this equation can be written as
X = x* N (Ceng) + (AT)eng U.
Formula (50b) can be used to move across adjacent elem@itsande(Ne — 1) to get
XM= M (T {{eNe o) + (ATJ*l)e(NH)U}) + (AT)eny U,
which, applying continuity across element boundaries through Eq. (52), gives
XM= ) 8D ((C)ene—1) + <AT\]_1>e(Ne—1)G> + (AT)engU.

Using the linearity of the mapping and applying the previous operation to all the eleme
in the particle path in succession leads to

Ne —
XM =20 ((C)ew) + (Z(Aﬂe(k)) Y-

k=1
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where the application of formulas (50a) and (53) finally results in

Ne _ _
XM =x"+ <Z(Af)e<k)> U=x"+ AtU,

k=1

which coincides with expression (45) and therefore concludes the proof.

When the mapping is not linear the equivalence clearly does not exist. The error ass
ciated with this strategy when applied to high-order elements will be assessed in Secti
using numerical examples. It is also possible to just use the guided search as an ir
guess to the full physical space substeps given by Eqgs. (45) and (48). Introducing a u
defined tolerance it is possible to compare the difference between the output of the gui
search from Egs. (50a)—(50b) and (54a)—(54b) with Egs. (45) and (48) and so limit the e
associated with the varying Jacobian.

4.3. Guided Search Implementation

We recall that the essential steps of the guided search are the following. At the ini
stage of the iteratiork = 0, given a parametric coordinafg and a velocityV in element
e(0), and a time stept, we set(¢)% e = =C", (Vi)eo) = (J*1>e(o)v andAt = At.

1 Evaluate¢) ol = (€) 2 + ATV, eo-

2. If (¢)3, does not lie within elemerg(k), then:

(i) determine the parametric coordinat@@in)g(k), of the intersection point with the
face and the time stefiti, to reach the face,

(ii) find the adjacent elememtk + 1) and calculate the parametric coordinates on the
adjacent element d§,) gk 1) = Zk ((Cin) o))

(iif) Set(C)g(kH) = (Cin)Q(kJrl)a <V;“)e(k+1) = <\]_l)e(k+1)V, At = At — Atin,k=k +1
and return to step 1.

Or else returrg™* = (¢) -
Two operations in stage 2 of the previous procedure are significant:

1. determining whether a point crosses the planar face of the standard region and i
tifying the timestep to intersection and the parametric coordinates at the face, and

2. evaluating the local parametric coordinates and element number of the adjacent
ment.

A further operation required is to interpolate the Jacobian mariX) e 1, to update the
velocity (V. )ex+1)- If the parametric coordinatég, ) g, 1, are known, this simply requires
the application of Eq. (10).

4.4. Intersection Criterion

Using the superscriptf” to refer to values on a face of the standard element, the distan
stofa point(C)Q(T()1 to the planar face is evaluated as

8T = (UL~ ¢)-n', (56)

wheren' denotes the unit outwards normal to the face aé]dare the coordinates of the
centroid of the face. This is illustrated in Fig. 7.
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Facef

n

<C>e(k)

FIG. 7. Distance to a face of the standard element.

According to the expression (56), the point will be inside the elemexit# 0 for all the
facesf of the element. Given the time steyr and the velocityV, )ex), we can evaluate
the time step required to reach the falce;rf] as

)
Att=atr—Atf, where At/ !

= . 57
over (V;)e(k) nf (57)

Clearly it is only possible to evaluat&ry,., if (V:)ew -n' is different from zero. The
velocity could be parallel to a face and, because of numerical round-off error, havi
negative normal velocity within an element and a positive normal velocity in the adjace
element. This might result in an infinite loop of substeps where the particle leaves
enters adjacent elements through the same point on the common boundary. This situ
can be avoided by introducing a toleranceepresenting the distance that a particle cat
move normal to the face before being interpreted as having left the element. Under s
criterion, the point is only considered to have left the elemefif)ex, - Nf| > €, and if
this is not true themz},,,= 0.

Given the overshoot time of the particle on the linear trajectory after intersecting w
the face At/ ., the coordinates of the intersection point are

(Cindeto = (C) oty — ATaverlVe et (58)

The last computational issue it to determine which face a given trajectory interse
A brute force approach would try all faces and find the face with the minimum or,
equivalently, the maximum z,e. However, since the orientation of the standard element:
regions is known a priori, an inspection of the linear parametric velocity eliminates cert:
faces from the intersection problem. For example, consider the standard quadrilateral re
shown in Fig. 8(a), if both components of the velogit )¢« are positive then the particle
must intersect either face 1 or face 2. Clearly identifying the relevant faces based u
the sign of each component of the velocity is straightforward and reduces the numbe
possible boundaries a point can intersect to two sides in two dimensions and three f
in three dimensions. We note that the problem can be further simplified in the case
simplex such as the standard triangular region shown in Fig. 8(b) where if both compon
of (V. )ex) are positive, then the particle must cross face 1.
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(a) (b)

0 0

FIG. 8. Standard region definition for (a) a quadrilateral element and (b) a triangular element.

4.5. Evaluation of Adjacent Coordinates

Having evaluated the parametric coordinates within the first elerdgpt,, we then
require the matching parametric coordinates in the adjacent eled\ghtl, . ,,- The defi-
nition of acollapsed coordinatsystem [11] is advantageous since it provides a consiste|
local coordinates systeli,, n2) within each face of the element (a single coordinate i
only required in two dimensions). To permit the hybrid mix of elemental regions, such
tetrahedral and prismatic elemental domains, the evaluation of the adjacent coordinate:
be considered in three steps:

1. evaluate face coordinates)g, from (Cin)gg

2. apply rotation/reflections of face connection to obtain new face coordingig ,,
from (n)gy,, and

3. determine the new elemental coordinai&s) ey 1, from (m)gy1)-

Steps 1 and 3 simply uses the definition of the appropriate components of the collar
coordinate system [11]. Step 2 however needs to take account of the different rotati
in which two elemental regions can connect. An example of this rotation is shown
Fig. 9 where we illustrate the three steps in determining the adjacent coordinate betw
two tetrahedral elements. In this example, the face must be rotated bytd &lgn the

FIG. 9. Tetrahedral connectivity.
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face coordinates. This is equivalent to changing the sign of both local face coordina
Information about elemental orientation is typically stored as part of the finite element me
and consequently access to this information will depend upon the local implementation
two dimensions, this requires storing the orientation of the edge coordinate that might n
to be transformed.

As a final point, we note that for tetrahedral elemental regions the collapsed coordir
system for a face, as shown in Fig. 9, will contain a singular point at one of the vertic
The consistency of the-type expansion requires that the singular points of the collapse
coordinate systems at adjacent faces must coincide. It can be shown that this confor
requirement can be achieved for any mesh [11, 16, 17]. It also has the added advantag
only the nondegenerate face coordinatenay need transforming.

4.6. Viable Schemes for Particle Tracking

As discussed in Section 3, we have a variety of possible strategies to handle patrticle tr
ing within high-order spatial representations. In Section 6 we will compare the followir
four approaches:

1. Particle tracking in the physical space evaluating the inverse mapping using a Newt
Raphson iteration as discussed in Section 3.1.1. We will denote this schemghgdival
spacealgorithm.

2. Particle tracking in the physical space using the guided search algorithm discusse
Sections 4.1 and 4.3. We will denote this scheme agtided searctalgorithm.

3. Particle tracking in the physical space using the guided search algorithm (
Sections 4.1 and 4.3) and checking the error between the physical space advance
and the guided search. This allows the error introduced by curved elements to be monit
and requires an error tolerancabove which the iterative technique to evaluate the invers
mapping is applied. We will refer to this scheme asdhbaled searclfe) algorithm.

4. Finally, we will use a hybrid scheme where the particles are advanced in the parame
space, as discussed in Section 3.2, provided they remain within the element during
substeps of the Runge—Kutta algorithm. If during a substep the particle leaves the elems
region, then physical space scheme using the error-checked guided search 3 is applie
will refer to this scheme as thgybrid algorithm.

We note that scheme 3 can be considered as an amalgamation of schemes 1 and 2
if the tolerance: is very small, then the scheme will resort to using the Newton iteration 1
evaluate the inverse mapping at every substep. Converselig large, the guided search
will be used at every substep. However, there is a cost associated with performing the
check that will be discussed in the next sections.

5. TIME INTERPOLATION OF UNSTEADY DATA

Unsteady data fields, for example, velocity and sometimes meshes, are generally avai
at afinite number of discrete time levels. The integration schemes often requires data fiel
intermediate time levels, which are not available, so interpolation in time is also required.
discussedin[3], this interpolation must be consistent with the order of the integration metl
used to maintain the required accuracy. In the present work, we have adopted an equisy
Lagrange interpolation centered around the required time level. The approximation of
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vector field (7) is calculated as

ue, t) ~ A, H =Y ajli (the (), (59)
I

wherea; are the coefficients of the Lagrange interpolation in time.

A question about numerical efficiency arises when considering whether the time
terpolation is to be performed before or after the spatial interpolation. These operati
may not commute and therefore could result in different computational load and numer
approximation.

Using the convention that the term within brackets is evaluated first, a spatial interpolat
on each available time level followed by time integration can be written as

ueot) &y a; lz 0 (t)) gy (C)]. (60)
j I

Following the notation of Fig. 10, for a given timé, the value at poinP! is interpolated
from the known modal/nodal valugs , BI, Ci, D, EJ, andF!. Then the interpolation in
time is performed over poin®/, for j =n — 1, n, n + 1, n + 2, to compute the field over
point Pp.

Alternatively, we could interpolate first in time over all the available points and then
space, i.e.,

ueot ~ > ¢i(0) [aj > a (u')}. (62)
I i

Here a time interpolation is employed to obtain the values at pdiitg, B>, C"te,
D", EM* and F™“, For instance, the value &"* is obtained using a Lagrange

n+cl

A" / An+a 2
// P

FIG. 10. Third-order time interpolation in two dimensions. The domain has been discretized using quadrz
triangular elements. The discrete data is available at time Ie¥@lg", t"*, andt"*? and the data is required at
timet™<, 0 < o < 1. PointsAl, BI, CJ, DI, El, andFJ; j =n —1,n,n+ 1, n + 2, are the quadrature or nodal
points over which the solution is available. Poif®s; j =n — 1, n,n+ 1, n 4 2 are the points resulting from
spatial interpolation over the available data fields. Pakits, B", C" D" E™* andF"* are the points
resulting from time interpolation of the quadrature or nodal points. FRint is the point at which the field is
required.
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interpolation through the values at poim8=, A", A™1 and A"*2, Using the values at
t"*, an interpolation in space is then performed to obtain the valig. at

For high-order elements the polynomial order plays a dominant role. The operat
represented by Eg. (60) is computationally more expensive because itrequires the evalu
of the interpolating polynomial basis at each time level while that given by Eq. (61) requil
a single evaluation of the basis functions only and is, therefore, more efficient for high-or
methods.

6. VALIDATION AND PERFORMANCE ANALYSIS

The performance of the algorithms will be tested first in Section 6.1 using an analy
solution in a simple geometry and then in Section 6.2 using a geometrically more comy
configuration.

6.1. Analytic Domain

In the first series of tests we have considered a range of schemes including Euler/F
RK2, RK3, and RK4 using the meshes shown in Fig. 11 which contain 37 prismatic eleme
adjacentto the boundary and 46 tetrahedral elements in the rest of the domain. The curv
of the surface is represented by positioning one of the triangular faces of the prism
elements on the cylindrical surface as shown in Fig. 11(a). The procedure employe:
generate such meshes is described in detail in [12]. The elemental boundary curvature
be removed to obtain a linear surface representation as shown in Fig. 11(b). In that c
all the prismatic elements have a local to global mapping which is nonconstant. We shc
point out that the Jacobian of the mapping for prisms is likely to be nonconstant even
linear elements. Nevertheless, it is possible to obtain a constant elemental Jacobian \
using straight-sided tetrahedral elements, and this condition is enforced in the high-o
mesh generation procedure.

To validate the particle tracking procedure, we first consider an analytic unsteady solut
previously used in [3], within these meshes of the form

(a) (b)

FIG. 11. Mixed prismatic and tetrahedral meshes using 83 elements within a cylindrical pipe: (a) curv
elements, (b) straight-sided elements.
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u=—x
= —-0.1y
w = —20ze O,

which corresponds to a particle location at titraf

X(t) = Xpe™

y(t) = yoe !
Z(t) _ Zoezoo(efo.nil)’

whereXo, Yo, Zo are the initial coordinates of the particle. The starting point is taken t
bexo=0.5, yo =0.25, 2o = 0.35, which corresponds to an initial velocity of0) = —0.5,
v(0) = —0.25 andw(0) = —7. The solution of this system is relatively stiff because of the
rapid decay of the coordinate in time. Therefore, we have considered a relatively shc
final time T =0.2. The integration was carried out using a set of time steps ranging fro
At =0.01to At =0.001. Figure 12(a) shows a comparison of the convergence rate of t
guided search algorithm with error checking, using a tolerared 02, and the physical
space scheme for all the Runge—Kutta schemes. The error in these tests is measured
distance between the final location of the particle and the analytic solution relative to |
exact value.

Figure 12(b) shows the converge rate of the three schemes using the RK4 time integre
where we observe that the guided search algorithm with no error checking produces a i
convergence rate only. Since the trajectory determined by the guided search is influence
the nonlinear elemental mapping the deterioration of convergence is to be expected. We
however that the hybrid algorithm maintains a fourth-order convergence rate until a le
of 10~° where the error of the elemental mapping saturates the results. Since the ana
solution is only available in the physical space, the parametric velocity has to be calculz
using the numerically determined Jacobian matrix. At a polynomial dederl0, the error

g __’_)/,é”%
E 1

10°F & Physical space
F [ ] Guided search

osl ® Hybrid

lg(error)
lg(error)

1010 L . I R R
4x107? 5x10-2 8x10-?

lg(at) lg(at)
(a) (b)

FIG. 12. (a) Temporal convergence for different Runge—Kutta schemes using an analytic solution with 1
physical space and guided seareh-(10-22) algorithms. (b) Temporal convergence for the RK4 scheme using the
physical space, guided search, and hybrid algorithms.
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50 -

Physical Space

Guided Search

Guided Search (e=10"12)
Hybrid

40 -

CPU time (sec.)
8
T
« O a b

0
-3
T

1 | s s | . . 1 . 2 . 1
2 4 6 8 10
Polynomial Order

Poly. | Physical | Guided search | Guided Search | Hybrid
Order | space (e = 10712)
2 4.34 3.99 3.84 4
4 11.82 11.47 11.32 11.47
6 21.25 20.85 20.68 21.08
8 34.75 34.23 34.1 34.77
10 50.57 49.84 49.63 50.52

FIG. 13. CPU time to march 100 particles on a circle of radiug5D over 100 time steps through a mesh of
tetrahedral elements with linear mappings as a function of polynomial order using a RK4 scheme.

introduced by this operation appears to®€L0~°). This is supported by the observation
of earlier saturation if the polynomial order of the approximation is reduced.

The solution of this problem using the straight-sided tetrahedral mesh, shownin Fig. 11
with constant Jacobians leads to identical results to those shown in Fig. 12 for all scher

To compare the relative merit of each scheme we also require to assess their computat
cost. Figures 13 and 14 show timings for two numerical experiments. In both cases, a circ
ring of particles is released within the computational domains, depicted in Fig. 11, whi
the velocity was set to be the numerical solution to the Poiseuille flow. All the tests we
performed using either the RK2 or RK4 schemes over 100 time steps with a time stej
0.0125 on a dedicated SGI R10000 195MHz computer. In the first test, shown in Fig.
we consider a ring of diameter4bD chosen to guarantee that all particles remain withir
the tetrahedral mesh. Since all these elements have linear mappings, the results indicat
there is practically no difference between the computational cost of the different algorith
for a fixed polynomial order. The scaling within this region is approxima@(*€) and is
well below the asymptotic scaling value ©f P®) which is expected when the interpolation
of the velocity field dominates.

Releasing a ring of particles of a larger diameted[®) produces a dramatic difference in
the timings included in Fig. 14. These particles now travel within the curved prismatic regi
of the computational domain and are therefore more sensitive to the nonlinear mapj
introduced by the deformation of the elements. In this example we have considered |
the RK2 and RK4 schemes. In the RK2 case the guided search with the small tolere
e =107% is the most costly while in the RK4 case the physical space particle tracking
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300
20} o Physical Space 2 Physical Space
a Guided Search a Guided Search
o  Guided Search (¢=10-%) o  Guided Search (e=10"%)
e  Guided Search (e=10"12) e  Guided Search (e=10-12)
+«  Hybrid «  Hybrid
o ~ 200
£ £
5 100 - =]
=] =3
5 S Wl
|-
0 1 1 1 1 0
2 4 [ 8 10
Polynomial Order Polynomial Order
(a) (b)
RK2 Data
Poly. | Physical | Guided Search | Guided Search | Guided Search | Hybrid
Order (e = 10712) (e = 107%)
2 16.91 20.6 6.81 3.85 4.74
4 43.17 54.06 17.06 10.93 13.32
6 75.19 92.35 30.49 19.61 24.11
8 128.77 155.94 50.69 32.88 41.28
10 180.15 205.7 73.57 47.83 59.67
RK4 Data
Poly. | Physical | Guided Search | Guided Search | Guided Search | Hybrid
Order (e = 10712) (e =107%)
2 26.61 21.59 10.84 6 8.52
4 66.09 57.93 29.28 17 23.97
6 116.09 98.98 52.29 30.58 43.25
8 197.7 164.99 86.41 50.51 74.26
10 284.45 221.89 124.67 72.92 105.24

FIG.14. CPUtimeto march 100 particles at a radius @8D over 100 time steps through a region discretized
by prismatic elements with nonlinear mappings as a function of polynomial order using (a) RK2 scheme, (b) F
scheme.

the most costly. However, they are both approximately four times more expensive tt
the guided search algorithm without error checking. If we introduce error checking in t
guided search algorithm, the cost depends on the error toleeariReducing the error
tolerance will force the algorithm to perform the inverse mapping at each substep to cor
the error introduced by the guided search. As the valéesfeduced, this scheme becomes
more similar to the physical space algorithm and, as shown in the RK2 case, it can €
be more expensive than the physical space algorithm because of the extra checking k
performed. However, setting a tolerance of 4% sufficient to recover most of the speed-up
of the hybrid scheme without error checking. Nevertheless, the best is still achieved by
hybrid algorithm which, from our previous tests, also showed better temporal converge
characteristics.
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FIG. 15. Streamlines in a reconstruction of a porcine, coronary bypass junction using a prismatic bounc
layer mesh with interior tetrahedral elements. Twenty equispaced particles were released at the inflow in a cir
ring of diameter of D and time marched for a timeé = 8.0.

6.2. Complex Domain

To compare the results of the previous section with a more realistic configuration we h
considered the computational domain shown in Fig. 15 of a reconstruction of a porci
coronary bypass junction. The mesh was generated using the procedure described ir
and consisted of 749 prismatic elements creating a boundary layer mesh surrounding :
tetrahedral elements with constant elemental Jacobian. The geometry and steady-sta
lution were represented by a polynomial of ordee=6 and, for this test, we released
20 equispaced particles on a ring of diamet&DD The particles were time marched using
different time steps and both second- and fourth-order Runge—Kutta schemes to a final
T = 8. This time period was chosen so that all particles remained within the computatio
domain. The particle were then marched backward in time to assess the error which
calculated as the distance between the initial and final position of the particles. Figure
shows that the released particles follow a range of trajectories incorporating a recircula
cell at the junction as well as a stagnation point region.

Figure 16 shows the average error over the 20 particles which have been marched fon
and backward over a total time peridd= 0.8. As before, the physical space and hybrid
algorithm both demonstrate the correct order convergence rate. The guided search algor
with error checking using a toleranee= 10-°, also converges at the correct rate until the
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FIG. 16. Error versus time step in logarithmic scale for all algorithms. (a) RK2 scheme, (b) RK4 scheme.

guided search error reaches $0becomes predominant, and the overall error saturate
Finally, the guided search algorithm without error checking once again converges ¢
considerably slower rate.

Figure 17 compares the average CPU cost per time step for each particle. As the time
is reduced, the cost per step is also reduced for all schemes except the guided search w
error checking which demonstrates a relatively time step independent speed. The re
for the dependence of the other scheme is the reduction in boundary intersections and
corresponding searching and iterative procedures. Unlike in the previous analytic dom
computations, the particles now do not necessarily remain within the curved prisme
element close to the domain walls and so we do not see the very large difference betw
the guided search & 1076) and hybrid algorithms over the physical space algorithm fo

a  Physical space 3x10- E_A Physical space
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FIG.17. Average CPU time per particle per time step in seconds as a function of time step for all algorithr
(a) RK2 scheme, (b) RK4 scheme.
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large time steps. Using a time stepsf = 0.2, the guided search without error checking
is more than five times faster for both the RK2 and RK3 schemes but is inaccurate.
the time step is reduced, the guided seaeck {0-°) and hybrid algorithms demonstrate
a faster reduction in CPU time than the physical space algorithm. This is to be expec
since the number of Newton—Raphson iterations required at each substep is also red
With a time step ofAt =0.002, the hybrid algorithm is 2.6 times faster than the physice
space algorithm for both the RK2 and RK4 schemes. At this time step, the guided se:
(e =107%)is 1.6 and 1.9 times faster than the physical space algorithm for the RK2 and R
schemes, respectively. The better error of the hybrid algorithm over the guided search,
and without error checking, and a CPU cost which lies in between these schemes cle
makes this the most attractive approach to particle tracking independent of the Runge—K
scheme.

7. CONCLUSION

This paper has discussed alternative approaches to calculate particle trajectories
high-order spatial approximations on unstructured meshes and a Runge—Kutta integrz
in time. The Runge—Kutta schemes presented here have used a fixed integration time
The role of variable time stepping has not been discussed but all these schemes cou
combined with different temporal strategies to introduce time step error control such
embedded Runge—Kutta methods with local extrapolation [9].

Particle tracking algorithms on high-order meshes that use either the physical space ¢
parametric space rely on nonlinear procedures to calculate the trajectories. This incre
considerably the calculation cost when compared with such implementations using me
of linear elements.

To reduce the computational cost, a novel alternative hybrid approach has been propc
This scheme advances a particle in both the physical and the parametric space withi
element and uses a linear searching algorithmgthéed searchto move across elements.
The guided search utilizes piecewise linear trajectories based upon the linear substeps
Runge—Kutta schemes and therefore does not require nonlinear iterations. We have sl
that this procedure is exact for elements with a constant Jacobian of the elemental mapj

The guided search has been implemented in conjunction with particle tracking schel
using the physical or parametric spaces, and their performance has been assessed u
set of analytical and computational, linear and high-order, velocity fields.

For particle tracking in the physical space, it has been found that the guided ses
could provide reasonable estimates of the final position of the particle which, combir
with suitable error checking, can produce a two- to threefold increase in speed on mc
problems. However, the best approach is obtained by combining particle tracking in
parametric space with a guided search using the velocity in physical space across bound
This scheme has also shown between a two- to threefold speed-up in both analytical
geometrically complex model problems.
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