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The problem of calculating particle trajectories on unstructured meshes using a
high-order polynomial approximation of the velocity field is addressed. The calcu-
lation of the particle trajectory is based on a Runge–Kutta integration in time. A
convenient way of implementing high-order approximations is to employ an auxil-
iary mapping that transforms a finite element into a topologically equivalent parent
element within a normalized parametric space. This presents two possible choices
of space in which to perform the time integration of the particle position: the phys-
ical space or the parametric space. We present algorithms for implementing both
particle tracking strategies using high-order elements and discuss their merits. The
main drawback of both methods is their reliance on nonlinear procedures to calculate
the particle trajectory. A novel alternative hybrid approach that advances a particle
in both the physical and the parametric space without requiring nonlinear iterations
is proposed. The error introduced by the alternative linearized procedures and their
effect in the rate of convergence of the time integration is discussed. Finally, the
performance of the different algorithms is compared using a set of analytical and
computational, linear and high-order, velocity fields.c© 2001 Academic Press
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1. INTRODUCTION

Computer visualization is a powerful tool for the processing and interpretation of the
large amounts of geometrical and flow field data currently produced in computational fluid
dynamics (CFD) simulations. It permits comparisons between computational and experi-
mental data and eases the identification of important flow features such as vortical flows,
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stagnation regions, and characteristic flow lines. A review of scientific visualization applied
to CFD until 1990 is presented in [4].

The emphasis of this paper is on the integration of particle paths using CFD data from
unstructured high-order finite element/spectral solvers. The calculation of particle paths is a
useful visualization technique for understanding flow behavior. It is also as an integral part
of Lagrangian and semi-Lagrangian CFD flow simulations of non-Newtonian fluids where
the modelling of history effects such as exposure to shear stresses is important. Examples
of such fluids can be found in [10].

Particle tracking for both structured and unstructured meshes is available in the majority
of packages for scientific visualization, e.g., Visual3 [6], PLOT3D [15], AVS [14], Tecplot
[1], and OpenDX [7] to name but a few. These methods typically assume a piecewise
linear representation of the velocity field. A good review of the work on particle tracking
for such representations is given by Darmofal and Haimes in [3] where they compare
multistep and multistage methods for time integration and discuss their accuracy, stability,
and performance.

Although high-order polynomial approximations of the velocity field are common in
finite element simulation of incompressible flows, the problem of calculating flow lines for
these high-order representations has received little attention to date. Two early examples of
particle tracking for high-order elements can be found in the literature of non-Newtonian
flows [5, 13]. These references deal with the numerical simulation of two-dimensional
non-Newtonian flows using constitutive equations for the stress tensor based on the strain
history calculated along streamlines. The integration in time is accomplished using the
standard fourth-order Runge–Kutta method. This time integration is applied in physical
space with a quadratic approximation of the velocity on a triangular mesh in [13]. Reference
[5] performs the time integration on the parametric space of the parent element using
unstructured quadrilateral meshes with a quadratic approximation of velocity. A Newton–
Raphson iteration is applied to find the intersection with boundaries. Neither of these articles
include detailed information on the implementation of the particle tracking method.

The approximation of a high-order velocity field by piecewise linear polynomials and
the use of a standard particle tracking algorithm might not result in an accurate calculation
of the trajectories. Streamline integration is very sensitive to small changes in kinematics.
Inconsistencies between the high-order velocity field and a linear representation might
result in kinematic changes that could have a significant effect on the pathlines in complex
regions which are very sensitive to the spatial resolution, such as recirculation cells. This
is highlighted in Fig. 1 which compares the particle traces for a high-order velocity field
calculated by the commercial package Tecplot [1] and the algorithm proposed in this paper.
The streamline is computed by Tecplot using a linear interpolation between points. The
inconsistency between the two approximations leads to a linearly interpolated streamline
that differs form the high-order one in the recirculation cell. Figure 1 shows the whole
domain on the left and two views of the junction to highlight the diverging streamlines.

The layout of this paper is arranged as follows. The basic notation for the description
of finite element representations of velocity fields and multistage time integration is intro-
duced in Section 2. Section 3 presents two strategies for nonlinear particle tracking using
high-order elements and their implementation. Section 4 presents an alternative hybrid
approach that advances a particle across elemental boundaries without resorting to nonlin-
ear iterations: theguided search. It discusses its accuracy and implementation, and pro-
poses various viable schemes for particle tracking which employ the guided search. Finally,
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FIG. 1. Streamlines in a junction between two straight pipes. The high-order finite element mapping is based
on a seventh-order polynomial expansion and the corresponding streamline is represented by the dotted line. The
solid line is the streamline starting at the same point as calculated by the commercial package Tecplot using a
subdivision of the mesh of high-order elements into linear elements. (Remark: One high-order element was divided
into 84 linear elements).

Section 6 presents some examples of application of the proposed algorithms to both ana-
lytical and computational velocity flow fields and within a complex curvilinear geometric
model.

2. PARTICLE TRACKING: PROBLEM DEFINITION

The problem of finding the trajectoryx(t) of a particle is formulated as a set of ordinary
differential equations

dx
dt
= u(x, t), (1)

wherex is the position in space andu is the velocity field. This simply states that the tangent
to the trajectory curve at a point of coordinatesx is parallel to the velocityu at that point.
The initial condition for this problem amounts to specifying the positionx0 of the particle
at a specific time,t = t0, i.e.,

x(t0)= x0. (2)

2.1. Numerical Representation of the Velocity Field

The velocity fieldu is generally not available analytically but through a discretized form.
In the finite element method, this field is defined as a piecewise continuous expansion over
elemental regions. In this paper we shall consider flow fields generated by both linear and
high-order spectral/hp element methods.
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Before dealing with the problem of integrating Eq. (1) in time using a finite element
representation of the velocity field, we will introduce some basic nomenclature relating to
the finite element method.

2.1.1. Isoparametric finite elements.In a general finite element formulation the com-
putational domainÄ is divided intoNe nonoverlapping subdomainsÄe, or finite elements,
such that

Ä= ∪eÄ
e e= 1, . . . , Ne,

and which are topologically identified with triangular and quadrilateral subdomains in
two dimensions and tetrahedral, prismatic, pyramidal, and hexahedral subdomains in three
dimensions.

It is standard practice to map a subdomain or elementÄe in physical spacex =
(x1, . . . , xn), wheren denotes the number of dimensions, onto a straight-sided subdomain
in ζ = (ζ1, . . . , ζn) with the same topology but fixed dimensions, called theparent element.
This operation is illustrated in Fig. 2 where a generic high-order element (solid line) and
a linear element (dashed line) are drawn for comparison. In both cases, the mapping is an
homeomorphism between the element in the physical space and the parent element, and
can be expressed by the analytical mapping inζ

x=χe(ζ), (3)

and the corresponding inverse, typically nonanalytical, mapping will be denoted by

ζ=Ψe(x). (4)

A significant difference between linear and high-order (nonlinear) elements is that the
mapping for linear elements has an analytical inverse while for the high-order elements, the
inverse of the nonlinear mapping has to be determined iteratively, in general.

FIG. 2. Two-dimensional isoparametric mapping between the physical and the parametric spaces. The triangle
ÂBC on the right is in the physical space and the trianglêA′B′C′ is its projection in the parametric space known
as the parent element. The dashed lines represent triangleÂBC with straight sides.
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In the isoparametricapproach the coordinate system is expressed as a mapping (3)
symbolically written as

x=
∑

I

x̂I φI (ζ), (5)

whereφI represents a member of a complete family of polynomial expansion bases,x is
the vector of physical space coordinates,ζ is the vector of local Cartesian coordinates in
the parametric space, and the quantitiesx̂I represent the expansion coefficients. If a nodal
expansion is used where the basisφI has the Kronecker delta property

φI (x̂J)=
{

1 if I = J

0 if I 6= J
, (6)

then the expansion coefficientsx̂I coincide with the physical coordinates of the mesh nodes
xI . The vector field is approximated in a similar fashion as

u(x, t) ≈ ũ(x(ζ), t)=
∑

I

ûI (t)φI (ζ), (7)

where the quantitieŝuI denote the expansion coefficients representing the velocity.
Over the parent element, the shape functions can be represented as a sum of a finite

number of polynomials (the expansion basis), whose number and shape depend on the
topology of the subdomain and on the required polynomial order of the expansion. For
instance, the linear polynomial expansion basis on a triangular region consists of three
linear polynomials. Each polynomial is associated to a different vertex of the triangle with
a value of 1 at that vertex and a value of 0 at the other two vertices.

2.1.2. Spectral/hp element method.An important feature of a high-order unstructured
formulation is computational efficiency. The efficient construction of an expansion basis in
an unstructured subdomain can be achieved through the introduction of a new coordinate
system, referred to asauxiliary spaceor collapsed coordinate system[11]. The mapping
between the parameteric space identified by the local Cartesian coordinate,ζ, and the
auxiliary space represented by,η, is denoted by

ζ= ζ(η). (8)

A two-dimensional example of this mapping is depicted in Fig. 3.
The advantage of such auxiliary mapping is that the local coordinatesη are now de-

fined in a square region−1≤ ηi ≤ 1. This permits the definition of an expansion basis as a
generalized tensor-product of one-dimensional expansions which can be evaluated in a com-
putationally efficient manner. The approximation of the velocity within a two-dimensional
element is given by

ue[χe(ζ)]=
∑
p,q

ûpqφ̃ pq(ζ1, ζ2)=
∑
p,q

ûpqφp(η1)φpq(η2), (9)

whereφp(η1) andφpq(η2) represent appropriate one-dimensional polynomials inη1 andη2,
respectively. Alternatively, the approximation can also be written in terms of the Lagrange
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FIG. 3. Two-dimensional example of the various mappings involved in the interpolation of functions using un-
structured high-order spectral/hpelements. The mapping between the physical and parametric spaces corresponds
to the standard isoparametric finite element representation. The mapping between the auxiliary and parametric
spaces is characteristic of the spectral/hp element approach and is introduced for computational efficiency.

polynomial as

ue[χe(η)]=
∑
p,q

upqhp(η1)hq(η2), (10)

wherehp(η1) andhq(η2) are the Lagrange polynomials through a set of points typically
chosen to be the quadrature points. In this representation the coefficientsupq are the solution
values at the quadrature points resulting from the Kronecker Delta nature of the Lagrange
polynomial basis. This form is particularly convenient for interpolation where the Kronecker
Delta leads to implementation efficiency.

The new coordinate system introduces a singularity where the Jacobian of the inverse
transformation,

η=η(ζ), (11)

can be multivalued but the coordinates are well-defined and bounded over the singular
region [11]. The main advantage of this generalized tensor-product formulation is that, by
using a sum factorization technique [11], the evaluation of expression (9) at a series ofP2

quadrature points requires onlyO(P3) operations in 2D, andO(P4) in 3D, if φp(η1) and
φpq(η2) are polynomials of orderP. A straightforward evaluation would have resulted in
an operation count ofO(P4) in 2D andO(P6) in 3D.

2.2. Time Integration Schemes

There are two main types of integration schemes for ordinary differential equations,
multistage methods (mainly Runge–Kutta type), and multistep methods. The literature on
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the subject suggests, e.g., [9], that multistep methods are more efficient and accurate in
problems where the velocity field is smooth. However, they require a start-up procedure
and their time step cannot be changed easily. On the other hand, a multistage algorithm does
not require a start-up procedure, the time step can be changed easily and is very robust.
However, it is computationally more expensive, since it requires more function evaluations.
Given that the velocity fields in our work are defined in a piecewise continuous fashion
and might represent sharp velocity gradients, even flow discontinuities, we have chosen to
adopt the Runge–Kutta schemes because of their flexibility and robustness.

The application of ans-stage explicit Runge–Kutta method to the general system of
ordinary differential equations

dy
dt
= f(y, t), (12)

with the initial conditions

y(t0)= y0, (13)

results in the iteration

yn+1= yn +1t
s∑

i=1

bi f i , (14)

whereyn denotes the valuey(tn),

f i = f

(
yn +1t

i−1∑
j=1

ai j f j , t
n + ci1t

)
, (15)

s is the number of stages and1t is the time step. The valuesbi , ci , andai j are the entries
of the correspondingButcher array[9]:

c1
...

cs

∣∣∣∣∣∣∣
a11 · · · a1s
...

...

as1 . . . ass∣∣ b1 · · · bs

.
(16)

The coefficients of this array define the particular scheme employed and are given, for the
schemes employed in this paper, at the end of this section.

The second term on the right-hand side of Eq. (14) is a weighted average of the valuesf i

taken at each stage. Hence, if we set

f̄=
s∑

i=1

bi f i , (17)

then a generic Runge–Kutta scheme, as represented by Eq. (14), can be considered as a
Euler scheme that marches in time using an averaged value off. The same consideration
can be applied to each stage, hence the second term on the right-hand side of Eq. (15) can
be considered as an Euler step taken with average velocity

f̂ i =
i−1∑
j=1

ai j f j . (18)
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FIG. 4. Interpretation of the Runge–Kutta integration as a series of Euler steps using a suitably averaged
velocity. The figure shows the steps for a three-stage scheme.

This interpretation of the Runge–Kutta scheme is depicted in Fig. 4 for the three-stage
scheme which shows how each stage of the Runge–Kutta integration can be envisaged as
a Euler step in the direction of an suitably averaged velocity. We will use this interpre-
tation as the basis for theguided searchalgorithm which will be developed in the next
sections.

Four Runge–Kutta integration methods have been investigated in this paper which provide
a wide range of orders of accuracy. These are the following:

1. RK1: A single-stage scheme, the Euler method. The entries of its Butcher array in
Eq. (16) are

0 | 0
| 1. (19)

2. RK2: A two-stage scheme, the improved Euler method, with Butcher array entries:

0
1

∣∣∣∣ 1∣∣ 1
2

1
2

. (20)

3. RK3: A three-stage scheme, Kutta’s third-order formula, with a Butcher array given by

0
1
2

1

∣∣∣∣∣∣∣ 1
2

−1 2∣∣ 1
6

2
3

1
6

.
(21)

4. RK4: A four-stage scheme, the classical Runge–Kutta method, with Butcher array
entries:

0
1
2

1
2

1

∣∣∣∣∣∣∣∣∣
1
2

0 1
2

0 0 1∣∣ 1
6

1
3

1
3

1
6

.

(22)
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3. PARTICLE TRACKING FOR HIGH-ORDER ELEMENTS

There are two possible strategies for tracking particles depending on the space in which
the time integration is performed. The first strategy is to perform the time integration in
the physical space. Given the piecewise continuous definition of the flow field, this process
involves searching for the element containing the point where the velocity is to be evaluated
followed by the interpolation of the velocity using the expansion basis within the element.
The two computationally intensive operations to be performed are:

(i) a nonlinear iterative procedure to find the local coordinatesζ in the parametric space
from the Cartesian coordinatesx in physical space, and

(ii) the interpolation of the velocityu at a point of parametric coordinatesζ.

The second strategy performs the time integration in the parametric space. The process
involves advancing the particle within an element using a transformed velocity field in
the parametric space until the particle reaches the element boundary. The process is then
continued in the neighbor element sharing the boundary where the particle exits. The two
main operations to be performed are:

(i) the interpolation of the velocityuζ at a point of coordinatesζ in the parametric space,
and

(ii) a nonlinear iterative procedure to find the intersection of a pathline with an elemental
boundary.

The computational cost of either integration scheme can be very high when applied to
the calculation of particle trajectories on a high-order flow field. We therefore wish to
devise efficient algorithms which take into consideration the computational cost of spatial
interpolation and nonlinear mappings.

3.1. Particle Tracking in the Physical Space

We recall that the explicit Runge–Kutta scheme (14) applied to the particle trajectory
equation (1) results in

xn+1= xn +1t
s∑

i=1

bi ui (23)

where

ui = u

(
xn +1t

i−1∑
j=1

ai j u j , t
n + ci1t

)
. (24)

For a fixed time step1t , the iterative algorithm at a certain stagen, can be summarized
as follows:

1. Find the local coordinatesζn (point P′ in Fig. 5) corresponding to the coordinates
xn of the current position (pointP in Fig. 5) using the inverse iteration to be discussed in
Section 3.1.1.

2. Interpolate the velocity fieldu at pointζn using Eq. (10).
3. Apply the time integration scheme represented by Eqs. (23) and (24), to find the next

position coordinatesxn+1 (point Q in Fig. 5).
4. If the stopping criterion is satisfied then exit, or else letn= n+ 1 and return to step 1.
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FIG. 5. Particle paths in the parametric and physical space.P andQ are the particle starting and next positions
in the physical space, respectively.P′ andQ′ are their images in the parametric space.P′′ is the intersection point
with the elemental boundary. TriangleŝA′B′C′ and B̂′A′D′ are the images in the parametric space of triangles
ÂBC and B̂ AD.

In the case of linear elements, this procedure is quite efficient since the inverse mapping
ζ=Ψ(x), used in step 1 and every substep of step 3, is analytic. However, for curvilinear
high-order elements the computational expense is significantly higher because of the cost
of the nonlinear iteration required to calculate the inverse mapping. This is described in
Section 3.1.1.

3.1.1. Inverse mapping.The finite element representation of the velocity field is piece-
wise continuous. Therefore, the evaluation of the velocity at a point in physical space in-
volves two steps: finding the element that contains the point, and interpolating the velocity
using the elemental expansion coefficients and polynomial basis in Eq. (10).

The first step is a range searching problem which is solved by a trial and error procedure
because the element to which the pointx belongs is not explicitly known. Each element
in the mesh is assigned a bounding box that encloses the element. An initial guess of the
element containing the point is obtained by searching through the element bounding boxes
to find one that contains the desired point. This is followed by the calculation of the local
coordinatesζ in the parametric space of the element associated to the current bounding box.
If the calculated local coordinates are outside the limits of definition of the parent element,
the rest of the bounding boxes are investigated, until the element containing the point is
found.

The efficiency of the searching procedure can be improved by using appropriate data
structures. If the number of elements in the mesh is large, tree structures [2] could be used
to find the element containing the starting point of a trajectory. For other points along the
trajectory, it is generally more efficient to start in the element containing the position at the
previous time step and then perform the search in the neighborhood of that element using
an element-to-element connectivity data structure.

The computation of the local coordinates forlinear elements is relatively inexpensive
since an analytical expression for the inverse mapping (4) is available. Unfortunately, an
analytical expression of the inverse mapping (4) is not available, in the general case, for
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high-orderelements and, because of the nonlinearity of the problem to be solved, an iterative
procedure such as a Newton–Raphson iteration [8] has to be applied.

For instance, if we would like to determine the coordinateζ such thatχe(ζ)= x, we
could formulate this as the problem of finding a zero of a functionF (ζ), where

F(ζ)=χe(ζ)− x. (25)

The Newton–Raphson iteration applied to Eq. (25) can be written as

Je · [ζ i+1− ζ i ]= −F(ζ i ), (26)

wherei represents an iteration counter andJe denotes the Jacobian of the mapping

Je= ∂F
∂ζ
= ∂χ

e

∂ζ
. (27)

A good strategy to identify the nearest elements is important because of the computational
expense of this iterative procedure that requires interpolation of the matrix∂F

∂ζ
, which has

nine entries in 3D. Since the interpolation involves polynomial evaluation, we also note that
the computation time will increase with the polynomial order of the mapping.

3.2. Particle Tracking in the Parametric Space

This section describes an alternative method for advancing a particle along a trajectory
that avoids the expensive calculation of the local coordinates through the iterative solution of
Eq. (25). Rather than considering the rate of change of the position of a particle in physical
space as described by Eq. (1), we can map the velocity field onto the parent element to
obtain an equation representing the corresponding rate of change of the particle position in
the parametric space within elemente as

dζe

dt
= ue

ζ (ζ, t). (28)

The transformed velocityue
ζ in the parent element can be evaluated in terms of the physical

velocityu by applying the chain rule to each of its scalar components, i.e.,

ui = dxi

dt
= ∂xi

∂ζ1

dζ1

dt
+ ∂xi

∂ζ2

dζ2

dt
+ ∂xi

∂ζ3

dζ3

dt
i = 1, 2, 3, (29)

which can be written in matrix form as

u= ∂χ
e

∂ζ
ue
ζ = Jeue

ζ , (30)

whereJe is the Jacobian of the mapping between elemente and its parent element. The
final expression for the transformed velocity in the parent element is

ue
ζ =

dζe

dt
= J−1

e u. (31)

This equation can only be applied within the corresponding elemental region since the rep-
resentation of the velocity field, and consequently the JacobianJe, is piecewise continuous.
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However, if we can determine the intersection of the particle trajectory with the boundary of
the parent element, then the continuity of the local coordinates along a boundary can be used
to advance the particle to the next adjacent element. This strategy leads to the parametric
space particle tracking which is described in the following.

Omitting the indexe for simplicity, the use of ans-stage Runge–Kutta for the integration
in time of Eq. (28) leads to

ζn+1= ζn +1t
s∑

i=1

bi uζ i , (32)

where

uζi = uζ

(
ζn +1t

i−1∑
j=1

ai j uζ j , t
n + ci1t

)
. (33)

The starting point of the algorithm for this strategy requires the calculation of the local
coordinatesζ0 of the initial position of the particlex0 using the inverse iteration described
in Section 3.1.1. At a later stagen of the iterative procedure, and using a fixed time step
1t , the algorithm can be summarized as follows:

1. interpolate the velocity fieldu and the JacobianJ at the pointζn, within elementen,
to evaluateuζ (ζn) using Eq. (31).

2. Apply the time integration scheme, given by Eqs. (32) and (33), with time step1t to
determine a new positionζn+1.

3. Consider the point of local coordinatesζn+1:
(i) if the point is interior to elementen, taketn+1= tn +1t , let n= n+ 1, and go to

step 1, otherwise
(ii) if the point is outside the elementen, find the intersection of the trajectory with

the boundaryζn+1 (point P′′ in Fig. 5) using the algorithm described in Section 3.2.1. The
corresponding time increment required to reach the boundary is now1τ < 1t and the
following steps are:

a. find the adjacent elementen+1 that shares the boundary point withen using the
element-to-element connectivity information,

b. determine the matching local coordinatesζn+1 in the adjacent elementen+1,
c. taketn+1= tn +1τ , let n= n+ 1 and go to step 1.

From an initial inspection of this algorithm, it is apparent that advancing the particle in
the parametric space has eliminated the nonlinear inverse mapping evaluation discussed in
Section 3.1.1. We are however now faced with the problem of determining the intersection
of the trajectory with the boundary of the parent element. If we use an Euler scheme (s= 1),
the intersection with the boundary is easily determined since it is linearly dependent on
1t . However, for a multistage scheme(s> 1) if a particle crosses the boundary we note,
by inspection of Eqs. (32) and (33), that the pointζn+1 is also a nonlinear function of the
timestep. This means that the calculation of the time step1τ required to move the particle
exactly to the boundary is a nonlinear problem that has to be solved iteratively. The need to
determine the boundary intersection arises from the discontinuous behavior of the elemental
Jacobian which results in changes of direction of the local velocityuζ across elements.
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In the following section, we will discuss two techniques to solve the nonlinear problem
of finding the time step1τ and the intersection between the trajectory and the boundary
of the parent element. For a given problem, the effectiveness of this approach decreases as
the size of the mesh, and consequently the number of intersections with elemental bound-
aries, increases. This approach is therefore more suitable to be used in conjunction with
p-refinement.

3.2.1. Boundary intersection.The integration in the parametric space must take into
account particles leaving an element through an elemental boundary as shown in Fig. 5 for
a two-dimensional case. In two dimensions, the boundaries are edges and vertices. We will
not consider vertices as separate boundaries, since they correspond to the intersection of
two edges. In three dimensions the boundaries are faces, edges, and vertices. Similarly, we
will consider only faces, since edges and vertices are the intersection of two and three faces,
respectively.

The boundary through which a particle leaves is easily identified since the coordinates
of the intersection will lie within a predefined distance from a line or plane in the elemen-
tal boundary. This is discussed in more detail in Section 4.3. The problem of determining
the time step1τ required for a particle to hit a boundary is more difficult because the
Runge–Kutta coefficients are nonlinear functions of the time step as shown in Eqs. (14) and
(15). In a high-order method, the interpolation of the velocity field within an element is an
expensive operation, and it is therefore important to use a method with a good rate of conver-
gence to reduce the number of velocity evaluations. We have implemented the quadratically
convergent Newton–Raphson and Steffensen’s methods [8] to solve this problem.

Let us consider the simple case of triangular elements as an example. If the particle
crosses the lower boundary of the parent element, i.e., the edgeB′A′ as shown in Fig. 5,
then we know thatζ2= −1. Substituting this value in the second component of Eq. (32),
the time step1τ required to exactly reach the boundary is obtained as the solution of the
equation

G1(ζ
n,1τ)= 1+ ζ n

2 +1τ
s∑

i=1

bi uζ2i = 0. (34)

Notice that sinceuζ2i = uζ2i (1τ) through Eq. (33), the functionG1 is nonlinear in1τ . If a
particle crosses the diagonal edge of the parent element, i.e., the edgeA′D′ in Fig. 5, then
ζ1+ ζ2= 0 and Eq. (32) will now read

G2(ζ
n,1τ)=

2∑
k=1

(
ζ n

k +1τ
s∑

i=1

bi uζki

)
= 0. (35)

Finally, the functional equation for a particle crossing the vertical boundary of the parent
element,ζ1= −1, is

G3(ζ
n,1τ)= 1+ ζ n

1 +1τ
s∑

i=1

bi uζ1i = 0. (36)

Therefore, the calculation of the time step1τ required for a particle to hit a boundary
requires the solution of the equationGi (ζ

n,1τ)= 0 where the indexi depends on the
boundary which the particle will intersect.
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Newton–Raphson method. The application of this method to the solution of Eqs. (34),
(35), or (36) results in the iterative procedure

1τ j+1=1τ j − Gi (ζ
n,1τ j )

G′i (ζ
n,1τ j )

, (37)

whereG′i denotes the derivative of the functionGi with respect to1τ , and j represents the
iteration index.

For triangular regions the derivatives of Eqs. (34), (35), and (36), are

G′1(ζ
n,1τ j ) =

s∑
i=1

bi uζ2i +1τ
s∑

i=1

bi
duζ2i

d1τ
(38)

G′2(ζ
n,1τ j ) =

2∑
k=1

(
s∑

i=1

bi uζki +1τ
s∑

i=1

bi
duζki

d1τ

)
(39)

G′3(ζ
n,1τ j ) =

s∑
i=1

bi uζ1i +1τ
s∑

i=1

bi
duζ1i

d1τ
. (40)

Following the notation of Eq. (33), we have

uζki (1τ)= uζk

(
ζn

ki , t
n
i

)
, (41)

with

ζn
ki (1τ)= ζ n

k +1τ
i−1∑
j=1

ai j uζk j ; tn
i (1τ)= tn + ci1τ (42)

and the derivative ofuζki with respect to1τ is calculated as

duζki

d1τ
= ∂uζki

∂tn
i

∂tn
i

∂1τ
+ ∂uζki

∂ζ n
ki

∂ζ n
ki

∂1τ

= ∂uζki

∂tn
i

ci + ∂uζki

∂ζ n
ki

(
i−1∑
j=1

ai j uζk j +1τ
i−1∑
j=1

ai j
∂uζk j

∂1τ

)
. (43)

Each Newton–Raphson step requires the evaluation of both the velocity and its gradient
three times. This involves the calculation of the gradient and then its interpolation.

Steffensen’s method.This scheme requires only function evaluations, is quadratically
convergent as the Newton–Raphson method and, applied to the system of Eqs. (34)–(36),
leads to the iterative sequence

1τ j+1=1τ j − [Gi (ζ
n,1τ j )]2

Gi (ζ
n,1τ j + Gi (ζ

n,1τ j ))−Gi (ζ
n,1τ j )

. (44)

This method is computationally less expensive than the Newton–Raphson iteration since it
requires only function evaluations.

Treatment of singularities.Both schemes will quadratically converge to the nearest root
if the initial guess is sufficiently close and if the behavior of the function near the root is
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smooth. This might however present problems if the elemental region is very distorted and
sampling of the velocity is required outside the element. The presence of large distortions
could result in the Jacobian matrix of the mapping, and therefore the local velocities,
being ill-behaved outside the parent element. Further the use of the auxiliary mapping with
its collapsed coordinate system in the spectral approach introduces a singularity in the
interpolation coordinatesη (see Fig. 3). Although the Cartesian parametric coordinates are
analytic within the element, the numerical evaluation of the local velocity becomes very ill-
defined in the vicinity of the singular point of the mappingζ → η. Alternative polynomial
representations could be used that do not introduce such geometrical singularity, but it is
not clear that they could guarantee a well-behaved approximation for curvilinear elements
outside their domain of definition. The nonlinearity of the iterative process and the potential
misbehavior of the root-finding procedure make this approach unsatisfactory and lead us to
consider an alternative treatment: a hybrid approach based on a guided search.

4. GUIDED SEARCH APPROACH TO PARTICLE TRACKING

The previous sections have highlighted several problems in the implementation of the
particle tracking algorithm in the physical and parametric spaces. Both strategies show
weak points when dealing with high-order elements. The main weakness of the physical
space approach is the need to solve the nonlinear inverse mapping problem at each step and
substep of a multistage scheme. This deficiency was overcome by using a time integration
scheme in the parametric space but at the expense of requiring the solution of the nonlinear
problem of finding the intersection of the trajectory with the elemental boundary.

To overcome these problems and improve efficiency we propose a hybrid approach
where the velocity is predominantly evaluated in physical space but the substeps utilize
the parametric space. Such an approach eliminates the inverse mapping iteration at each
substep although, as we shall demonstrate, it does introduce an error associated with the
variation of the Jacobian of the mapping.

As a starting point we note that the Runge–Kutta scheme for the physical space particle
tracking given by Eqs. (23) and (24) can be equivalently written as

xn+1 = xn +1tŪ (45)

Ū =
s∑

i=1

bi ui (46)

ui = u(xi , t
n + ci1t) (47)

xi = xn +1tŪi (48)

Ūi =
s∑

j=1

ai j u j . (49)

Let us return to the point discussed in Section 2.2, i.e., that each step of the Runge–
Kutta scheme can be considered as a linear step based on an average velocity (see Fig. 4),
in the context of the physical space particle tracking. As discussed in Section 3.1, the
computational difficulty of this scheme is due to the nonlinear iteration needed to evaluate the
local parametric coordinatesζn+1 andζ i , the images in the parametric space of the physical
coordinatesxn+1 andxi , respectively, which are necessary to interpolate the velocities. In
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the hybrid algorithm, we replace Eq. (45) by the substeps:

〈ζ〉e(1) = ζn (50a)

〈ζ〉e(k+1) = Tk
{〈ζ〉e(k) + 〈1τJ−1〉e(k)Ū

}
k= 1, . . . , Ne− 1 (50b)

ζn+1 = 〈ζ〉e(Ne) + 〈1τJ−1〉e(Ne)Ū (50c)

xn+1 = χ(ζn+1). (50d)

Heree(k); k= 1, . . . , Ne denotes the list of elements crossed by a particle during the guided
search; the symbol〈 f 〉e(k) indicates that the quantityf is evaluated within elemente(k); Ne

is the number of such elements; and

Tk : 〈ζ〉e(k)→ 〈ζ〉e(k+1) (51)

represents a mapping of local parametric coordinates across elemental boundaries. The
continuity of position across boundary faces can be expressed as

χe(k+1)(Tk{〈ζ〉e(k)})=χe(k)(〈ζ〉e(k)). (52)

The elemental time steps〈1τ 〉e(k) are such that

Ne∑
k=1

〈1τ 〉e(k)=1t. (53)

In a similar fashion, Eq. (48) is replaced by the substeps:

〈ζ〉e(1) = ζn (54a)

〈ζ〉e(k+1) = Tk
{〈ζ〉e(k) + 〈1τJ−1〉e(k)Ūi

}
k= 1, . . . , Ne− 1 (54b)

ζ i = 〈ζ〉e(Ne) + 〈1τJ−1〉e(Ne)Ūi (54c)

xi = χ(ζ i ). (54d)

In this manner we advance the parametric coordinates rather than the physical coordinates
thus circumventing the need for the inverse mapping. Interpreting the trajectory given by
Eqs. (45) and (48) as a straight line in the direction of an average velocity simplifies the
problem of calculating the parametric coordinate of the intersection with the parent element
boundary since it is now linear and can therefore be evaluated easily. We shall refer to this
process as aguided search. A complete description of this step is given in Section 4.1. An
outline of this algorithm follows.

The starting point of this procedure is, in common with all the procedures, the calculation
of the local coordinatesζ0 of the starting positionx0. At a later stagen of the iteration, this
strategy can be summarized as follows:

1. Interpolate the velocity field and Jacobian matrix at pointζn within elemente(n)
using Eq. (10).

2. Apply the time integration scheme based on the physical space integration as follows.

(i) For each substep of the Runge–Kutta scheme:
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a. evaluate the average velocity in physical space based upon Eq. (49),
b. advance the parametric and physical coordinatesχ(ζ i ) using the guided search

Eqs. (54a)–(54d), and
c. evaluate the intermediate physical velocities and Jacobians using Eq. (10).

(ii) Compute the final average physical velocity using (46).
(iii) Compute the position of the particle in the physical and parametric spaceχ(ζn)

using the guided search Eqs. (50a)–(50d).

It is also possible to advance Eqs. (45) and (48) concurrently with the guided search
Eqs. (50a)–(50d) and (54a)–(54d) to act as an error check. This point will be discussed
further in Section 4.2.

4.1. Guided Search Algorithm

Theguided searchallows a particle leaving an element to be traced without resorting to
an iterative procedure. The idea behind this approach is based upon the observation that each
stage of the Runge–Kutta scheme can be considered as a linear substep. In this approach
we take a series of linear substeps in the parametric space instead of a linear substep in
physical space. This point is illustrated in Fig. 6 where we consider a step starting at point
P in the physical space. A linear step in physical space1x= v1t would take the particle
to pointQ. We then require the local parametric coordinate of pointQ in order to proceed.
In the guided search, the parametric pointP′ is advanced by a linear substep1ζ= vζ1τe1

based on the local parametric velocityvζ = J−1
e1

v. In general, the point will not remain
within an element. The time taken for the point to meet a boundary of the parent element
(point R′ in Fig. 6) is then1τe1 ≤1t . Since the step is linear and the boundary is planar,
the intersection can be evaluated analytically. To complete the guided search, the Jacobian
matrix is then evaluated at pointR′ in elemente2 and a new parametric velocityvζ = J−1

e2
v

FIG. 6. Illustration of the guided search algorithm. The vectorP Q represents the step in the physical space
parallel to the global averaged velocityvP evaluated atP. The straight segmentsP′R′, R′S′, andS′T ′ are steps
in the parametric space parallel to the transformed velocityvζ= JevP. The local velocityvζ is evaluated at the
points P′, R′, andS′ for elementse1, e2, ande3, respectively. The pathP RSTis the image in physical space of
the piecewise linear steps taken in the parametric space.
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is determined. The point is then linearly advanced through elemente2 over a time1τe2,
which is evaluated as the time for the particle to reachS′. Since the total timestep has not
been completed yet, the Jacobian matrix is evaluated at pointS′ in elemente3 and the new
parametric velocityvζ= J−1

e3
v is determined. The particle is then linearly advanced a time

1τe3, such that1t =1τe1 +1τe2 +1τe3.
This procedure drastically reduces the computation time required to trace a particle and

overcomes the problems posed by the iterative solution of the nonlinear problems associated
with the two previous particle tracking strategies. The guided search is exact when applied to
elements with a constant Jacobian but an error arises when the trajectory crosses elements
with varying Jacobian. This will be explained in the next section. Typically, high-order
schemes use linear element mappings when dealing with straight-sided elements and so
varying Jacobian are usually associated with curvilinear elements.

4.2. Accuracy of the Guided Search Scheme

To assess the errors introduced by the guided search, the substeps of the hybrid Runge–
Kutta scheme should be interpreted in the physical space. For the hybrid scheme to be exact,
we require Eq. (45) to be equivalent to Eqs. (50a)–(50d). In this section we will show that
this is satisfied when the mapping between the parametric and physical spaces is linear.

The proof that Eqs. (50a)–(50d) are equivalent to expression (45) for a linear mapping
proceeds as follows. For a linear mapping, the Jacobian within an elemente is constant and
the coordinate transformation can be written in incremental form as

χe(1ζ)= Je1ζ. (55)

Substituting Eq. (50c) into (50d) we have

xn+1=χ(ζn+1)=χe(Ne)
(〈ζ〉e(Ne) + 〈1τJ−1〉e(Ne)Ū

)
.

Using the linearity of the map and expression (55), this equation can be written as

xn+1=χe(Ne)(〈ζ〉e(Ne))+ 〈1τ 〉e(Ne)Ū.

Formula (50b) can be used to move across adjacent elementse(Ne) ande(Ne− 1) to get

xn+1=χe(Ne)
(
TNe−1

{〈ζ〉e(Ne−1) + 〈1τJ−1〉e(Ne−1)Ū
})+ 〈1τ 〉e(Ne)Ū,

which, applying continuity across element boundaries through Eq. (52), gives

xn+1=χe(Ne−1)
(〈ζ〉e(Ne−1) + 〈1τJ−1〉e(Ne−1)Ū

)+ 〈1τ 〉e(Ne)Ū.

Using the linearity of the mapping and applying the previous operation to all the elements
in the particle path in succession leads to

xn+1=χe(1)
(〈ζ〉e(1))+( Ne∑

k=1

〈1τ 〉e(k)
)

Ū,
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where the application of formulas (50a) and (53) finally results in

xn+1= xn +
(

Ne∑
k=1

〈1τ 〉e(k)
)

Ū= xn +1tŪ,

which coincides with expression (45) and therefore concludes the proof.
When the mappingχ is not linear the equivalence clearly does not exist. The error asso-

ciated with this strategy when applied to high-order elements will be assessed in Section 6
using numerical examples. It is also possible to just use the guided search as an initial
guess to the full physical space substeps given by Eqs. (45) and (48). Introducing a user-
defined tolerance it is possible to compare the difference between the output of the guided
search from Eqs. (50a)–(50b) and (54a)–(54b) with Eqs. (45) and (48) and so limit the error
associated with the varying Jacobian.

4.3. Guided Search Implementation

We recall that the essential steps of the guided search are the following. At the initial
stage of the iteration,k= 0, given a parametric coordinateζn and a velocityV in element
e(0), and a time step1t , we set〈ζ〉ne(0)= ζn, 〈Vζ 〉e(0)=〈J−1〉e(0)V and1τ =1t .

1. Evaluate〈ζ〉n+1
e(k) =〈ζ〉ne(k) +1τ 〈Vζ 〉e(k).

2. If 〈ζ〉n+1
e(k) does not lie within elemente(k), then:

(i) determine the parametric coordinates,〈ζ in〉ne(k), of the intersection point with the
face and the time step1τin to reach the face,

(ii) find the adjacent elemente(k+ 1) and calculate the parametric coordinates on the
adjacent element as〈ζ in〉ne(k+1)= Tk(〈ζ in〉ne(k)),

(iii) set〈ζ〉ne(k+1)=〈ζ in〉ne(k+1), 〈Vζ 〉e(k+1)=〈J−1〉e(k+1)V,1τ =1τ −1τin,k= k+ 1
and return to step 1.

Or else returnζn+1=〈ζ〉n+1
e(k) .

Two operations in stage 2 of the previous procedure are significant:

1. determining whether a point crosses the planar face of the standard region and iden-
tifying the timestep to intersection and the parametric coordinates at the face, and

2. evaluating the local parametric coordinates and element number of the adjacent ele-
ment.

A further operation required is to interpolate the Jacobian matrix〈J−1〉e(k+1) to update the
velocity〈Vζ 〉e(k+1). If the parametric coordinates〈ζ in〉ne(k+1) are known, this simply requires
the application of Eq. (10).

4.4. Intersection Criterion

Using the superscript ‘f ’ to refer to values on a face of the standard element, the distance
δ f of a point〈ζ〉n+1

e(k) to the planar face is evaluated as

δ f = (〈ζ〉n+1
e(k) − ζ f

0

) · n f , (56)

wheren f denotes the unit outwards normal to the face andζ
f
0 are the coordinates of the

centroid of the face. This is illustrated in Fig. 7.
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FIG. 7. Distance to a face of the standard element.

According to the expression (56), the point will be inside the element ifδ f ≤ 0 for all the
faces f of the element. Given the time step1τ and the velocity〈Vζ 〉e(k), we can evaluate
the time step required to reach the face1τ f

in as

1τ
f

in =1τ −1τ f
over where 1τ f

over=
δ f

〈Vζ 〉e(k) · n f
. (57)

Clearly it is only possible to evaluate1τ f
over if 〈Vζ 〉e(k) · n f is different from zero. The

velocity could be parallel to a face and, because of numerical round-off error, have a
negative normal velocity within an element and a positive normal velocity in the adjacent
element. This might result in an infinite loop of substeps where the particle leaves and
enters adjacent elements through the same point on the common boundary. This situation
can be avoided by introducing a toleranceε representing the distance that a particle can
move normal to the face before being interpreted as having left the element. Under such
criterion, the point is only considered to have left the element if|〈Vζ 〉e(k) · n f | > ε, and if
this is not true then1τ f

over= 0.
Given the overshoot time of the particle on the linear trajectory after intersecting with

the face,1τ f
over, the coordinates of the intersection point are

〈ζ in〉e(k)=〈ζ〉n+1
e(k) −1τ f

over〈Vζ 〉e(k). (58)

The last computational issue it to determine which face a given trajectory intersects.
A brute force approach would try all faces and find the face with the minimum1τin or,
equivalently, the maximum1τover. However, since the orientation of the standard elemental
regions is known a priori, an inspection of the linear parametric velocity eliminates certain
faces from the intersection problem. For example, consider the standard quadrilateral region
shown in Fig. 8(a), if both components of the velocity〈Vζ 〉e(k) are positive then the particle
must intersect either face 1 or face 2. Clearly identifying the relevant faces based upon
the sign of each component of the velocity is straightforward and reduces the number of
possible boundaries a point can intersect to two sides in two dimensions and three faces
in three dimensions. We note that the problem can be further simplified in the case of a
simplex such as the standard triangular region shown in Fig. 8(b) where if both components
of 〈Vζ 〉e(k) are positive, then the particle must cross face 1.
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FIG. 8. Standard region definition for (a) a quadrilateral element and (b) a triangular element.

4.5. Evaluation of Adjacent Coordinates

Having evaluated the parametric coordinates within the first element〈ζ in〉ne(k) we then
require the matching parametric coordinates in the adjacent element〈ζ in〉ne(k+1). The defi-
nition of acollapsed coordinatesystem [11] is advantageous since it provides a consistent
local coordinates system(η1, η2) within each face of the element (a single coordinate is
only required in two dimensions). To permit the hybrid mix of elemental regions, such as
tetrahedral and prismatic elemental domains, the evaluation of the adjacent coordinates can
be considered in three steps:

1. evaluate face coordinates〈η〉ne(k) from 〈ζ in〉ne(k),
2. apply rotation/reflections of face connection to obtain new face coordinate〈η〉ne(k+1)

from 〈η〉ne(k), and
3. determine the new elemental coordinates(ζ in〉ne(k+1) from 〈η〉ne(k+1).

Steps 1 and 3 simply uses the definition of the appropriate components of the collapsed
coordinate system [11]. Step 2 however needs to take account of the different rotations
in which two elemental regions can connect. An example of this rotation is shown in
Fig. 9 where we illustrate the three steps in determining the adjacent coordinate between
two tetrahedral elements. In this example, the face must be rotated by 180◦ to align the

FIG. 9. Tetrahedral connectivity.
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face coordinates. This is equivalent to changing the sign of both local face coordinates.
Information about elemental orientation is typically stored as part of the finite element mesh
and consequently access to this information will depend upon the local implementation. In
two dimensions, this requires storing the orientation of the edge coordinate that might need
to be transformed.

As a final point, we note that for tetrahedral elemental regions the collapsed coordinate
system for a face, as shown in Fig. 9, will contain a singular point at one of the vertices.
The consistency of thep-type expansion requires that the singular points of the collapsed
coordinate systems at adjacent faces must coincide. It can be shown that this conformity
requirement can be achieved for any mesh [11, 16, 17]. It also has the added advantage that
only the nondegenerate face coordinateη1 may need transforming.

4.6. Viable Schemes for Particle Tracking

As discussed in Section 3, we have a variety of possible strategies to handle particle track-
ing within high-order spatial representations. In Section 6 we will compare the following
four approaches:

1. Particle tracking in the physical space evaluating the inverse mapping using a Newton–
Raphson iteration as discussed in Section 3.1.1. We will denote this scheme as thephysical
spacealgorithm.

2. Particle tracking in the physical space using the guided search algorithm discussed in
Sections 4.1 and 4.3. We will denote this scheme as theguided searchalgorithm.

3. Particle tracking in the physical space using the guided search algorithm (see
Sections 4.1 and 4.3) and checking the error between the physical space advancement
and the guided search. This allows the error introduced by curved elements to be monitored
and requires an error toleranceε above which the iterative technique to evaluate the inverse
mapping is applied. We will refer to this scheme as theguided search(ε) algorithm.

4. Finally, we will use a hybrid scheme where the particles are advanced in the parametric
space, as discussed in Section 3.2, provided they remain within the element during all
substeps of the Runge–Kutta algorithm. If during a substep the particle leaves the elemental
region, then physical space scheme using the error-checked guided search 3 is applied. We
will refer to this scheme as thehybridalgorithm.

We note that scheme 3 can be considered as an amalgamation of schemes 1 and 2 since
if the toleranceε is very small, then the scheme will resort to using the Newton iteration to
evaluate the inverse mapping at every substep. Conversely, ifε is large, the guided search
will be used at every substep. However, there is a cost associated with performing the error
check that will be discussed in the next sections.

5. TIME INTERPOLATION OF UNSTEADY DATA

Unsteady data fields, for example, velocity and sometimes meshes, are generally available
at a finite number of discrete time levels. The integration schemes often requires data fields at
intermediate time levels, which are not available, so interpolation in time is also required. As
discussed in [3], this interpolation must be consistent with the order of the integration method
used to maintain the required accuracy. In the present work, we have adopted an equispaced
Lagrange interpolation centered around the required time level. The approximation of the
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vector field (7) is calculated as

u(x, t) ≈ ũ(x(ζ), t)=
∑

I

∑
j

aj ûI (t
j )φI (ζ), (59)

whereaj are the coefficients of the Lagrange interpolation in time.
A question about numerical efficiency arises when considering whether the time in-

terpolation is to be performed before or after the spatial interpolation. These operations
may not commute and therefore could result in different computational load and numerical
approximation.

Using the convention that the term within brackets is evaluated first, a spatial interpolation
on each available time level followed by time integration can be written as

u(x, t) ≈
∑

j

aj

[∑
I

ûI (t
j )φI (ζ)

]
. (60)

Following the notation of Fig. 10, for a given timet j , the value at pointP j is interpolated
from the known modal/nodal valuesAj , B j ,C j , D j , E j , andF j . Then the interpolation in
time is performed over pointsP j , for j = n− 1, n, n+ 1, n+ 2, to compute the field over
point Pn+α.

Alternatively, we could interpolate first in time over all the available points and then in
space, i.e.,

u(x, t) ≈
∑

I

φI (ζ)

[
aj

∑
j

ûI (t
j )

]
. (61)

Here a time interpolation is employed to obtain the values at pointsAn+α, Bn+α, Cn+α,
Dn+α, En+α, and Fn+α. For instance, the value atAn+α is obtained using a Lagrange

FIG. 10. Third-order time interpolation in two dimensions. The domain has been discretized using quadratic
triangular elements. The discrete data is available at time levelstn−1, tn, tn+1, andtn+2 and the data is required at
time tn+α, 0< α < 1. PointsAj , Bj ,C j , D j , E j , andF j ; j = n− 1, n, n+ 1, n+ 2, are the quadrature or nodal
points over which the solution is available. PointsP j ; j = n− 1, n, n+ 1, n+ 2 are the points resulting from
spatial interpolation over the available data fields. PointsAn+α, Bn+α,Cn+α, Dn+α, En+α , andFn+α are the points
resulting from time interpolation of the quadrature or nodal points. PointPn+α is the point at which the field is
required.
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interpolation through the values at pointsAn−1, An, An+1, and An+2. Using the values at
tn+α, an interpolation in space is then performed to obtain the value atPn+α.

For high-order elements the polynomial order plays a dominant role. The operation
represented by Eq. (60) is computationally more expensive because it requires the evaluation
of the interpolating polynomial basis at each time level while that given by Eq. (61) requires
a single evaluation of the basis functions only and is, therefore, more efficient for high-order
methods.

6. VALIDATION AND PERFORMANCE ANALYSIS

The performance of the algorithms will be tested first in Section 6.1 using an analytic
solution in a simple geometry and then in Section 6.2 using a geometrically more complex
configuration.

6.1. Analytic Domain

In the first series of tests we have considered a range of schemes including Euler/RK1,
RK2, RK3, and RK4 using the meshes shown in Fig. 11 which contain 37 prismatic elements
adjacent to the boundary and 46 tetrahedral elements in the rest of the domain. The curvature
of the surface is represented by positioning one of the triangular faces of the prismatic
elements on the cylindrical surface as shown in Fig. 11(a). The procedure employed to
generate such meshes is described in detail in [12]. The elemental boundary curvature can
be removed to obtain a linear surface representation as shown in Fig. 11(b). In that case,
all the prismatic elements have a local to global mapping which is nonconstant. We should
point out that the Jacobian of the mapping for prisms is likely to be nonconstant even for
linear elements. Nevertheless, it is possible to obtain a constant elemental Jacobian when
using straight-sided tetrahedral elements, and this condition is enforced in the high-order
mesh generation procedure.

To validate the particle tracking procedure, we first consider an analytic unsteady solution,
previously used in [3], within these meshes of the form

FIG. 11. Mixed prismatic and tetrahedral meshes using 83 elements within a cylindrical pipe: (a) curved
elements, (b) straight-sided elements.
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u = −x
v = −0.1y

w = −20ze−0.1t ,

which corresponds to a particle location at timet of

x(t) = x0e−t

y(t) = y0e−0.1t

z(t) = z0e200(e−0.1t−1),

wherex0, y0, z0 are the initial coordinates of the particle. The starting point is taken to
bex0= 0.5, y0= 0.25, z0= 0.35, which corresponds to an initial velocity ofu(0)=−0.5,
v(0)=−0.25 andw(0)= −7. The solution of this system is relatively stiff because of the
rapid decay of thez coordinate in time. Therefore, we have considered a relatively short
final time T = 0.2. The integration was carried out using a set of time steps ranging from
1t = 0.01 to1t = 0.001. Figure 12(a) shows a comparison of the convergence rate of the
guided search algorithm with error checking, using a toleranceε= 10−12, and the physical
space scheme for all the Runge–Kutta schemes. The error in these tests is measured as the
distance between the final location of the particle and the analytic solution relative to the
exact value.

Figure 12(b) shows the converge rate of the three schemes using the RK4 time integration
where we observe that the guided search algorithm with no error checking produces a linear
convergence rate only. Since the trajectory determined by the guided search is influenced by
the nonlinear elemental mapping the deterioration of convergence is to be expected. We note
however that the hybrid algorithm maintains a fourth-order convergence rate until a level
of 10−9 where the error of the elemental mapping saturates the results. Since the analytic
solution is only available in the physical space, the parametric velocity has to be calculated
using the numerically determined Jacobian matrix. At a polynomial orderP= 10, the error

FIG. 12. (a) Temporal convergence for different Runge–Kutta schemes using an analytic solution with the
physical space and guided search (ε= 10−12) algorithms. (b) Temporal convergence for the RK4 scheme using the
physical space, guided search, and hybrid algorithms.
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FIG. 13. CPU time to march 100 particles on a circle of radius 0.45D over 100 time steps through a mesh of
tetrahedral elements with linear mappings as a function of polynomial order using a RK4 scheme.

introduced by this operation appears to beO(10−9). This is supported by the observation
of earlier saturation if the polynomial order of the approximation is reduced.

The solution of this problem using the straight-sided tetrahedral mesh, shown in Fig. 11(b),
with constant Jacobians leads to identical results to those shown in Fig. 12 for all schemes.

To compare the relative merit of each scheme we also require to assess their computational
cost. Figures 13 and 14 show timings for two numerical experiments. In both cases, a circular
ring of particles is released within the computational domains, depicted in Fig. 11, where
the velocity was set to be the numerical solution to the Poiseuille flow. All the tests were
performed using either the RK2 or RK4 schemes over 100 time steps with a time step of
0.0125 on a dedicated SGI R10000 195MHz computer. In the first test, shown in Fig. 13,
we consider a ring of diameter 0.45D chosen to guarantee that all particles remain within
the tetrahedral mesh. Since all these elements have linear mappings, the results indicate that
there is practically no difference between the computational cost of the different algorithms
for a fixed polynomial order. The scaling within this region is approximatelyO(P1.6) and is
well below the asymptotic scaling value ofO(P3)which is expected when the interpolation
of the velocity field dominates.

Releasing a ring of particles of a larger diameter, 0.9D, produces a dramatic difference in
the timings included in Fig. 14. These particles now travel within the curved prismatic region
of the computational domain and are therefore more sensitive to the nonlinear mapping
introduced by the deformation of the elements. In this example we have considered both
the RK2 and RK4 schemes. In the RK2 case the guided search with the small tolerance
ε= 10−6 is the most costly while in the RK4 case the physical space particle tracking is



382 COPPOLA, SHERWIN, AND PEIŔO

FIG. 14. CPU time to march 100 particles at a radius of 0.45D over 100 time steps through a region discretized
by prismatic elements with nonlinear mappings as a function of polynomial order using (a) RK2 scheme, (b) RK4
scheme.

the most costly. However, they are both approximately four times more expensive than
the guided search algorithm without error checking. If we introduce error checking in the
guided search algorithm, the cost depends on the error toleranceε. Reducing the error
tolerance will force the algorithm to perform the inverse mapping at each substep to correct
the error introduced by the guided search. As the value ofε is reduced, this scheme becomes
more similar to the physical space algorithm and, as shown in the RK2 case, it can even
be more expensive than the physical space algorithm because of the extra checking being
performed. However, setting a tolerance of 10−6 is sufficient to recover most of the speed-up
of the hybrid scheme without error checking. Nevertheless, the best is still achieved by the
hybrid algorithm which, from our previous tests, also showed better temporal convergence
characteristics.
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FIG. 15. Streamlines in a reconstruction of a porcine, coronary bypass junction using a prismatic boundary
layer mesh with interior tetrahedral elements. Twenty equispaced particles were released at the inflow in a circular
ring of diameter of 0.8D and time marched for a timeT = 8.0.

6.2. Complex Domain

To compare the results of the previous section with a more realistic configuration we have
considered the computational domain shown in Fig. 15 of a reconstruction of a porcine,
coronary bypass junction. The mesh was generated using the procedure described in [12]
and consisted of 749 prismatic elements creating a boundary layer mesh surrounding 1720
tetrahedral elements with constant elemental Jacobian. The geometry and steady-state so-
lution were represented by a polynomial of orderP= 6 and, for this test, we released
20 equispaced particles on a ring of diameter 0.8D. The particles were time marched using
different time steps and both second- and fourth-order Runge–Kutta schemes to a final time
T = 8. This time period was chosen so that all particles remained within the computational
domain. The particle were then marched backward in time to assess the error which was
calculated as the distance between the initial and final position of the particles. Figure 15
shows that the released particles follow a range of trajectories incorporating a recirculation
cell at the junction as well as a stagnation point region.

Figure 16 shows the average error over the 20 particles which have been marched forward
and backward over a total time periodT = 0.8. As before, the physical space and hybrid
algorithm both demonstrate the correct order convergence rate. The guided search algorithm,
with error checking using a toleranceε= 10−6, also converges at the correct rate until the
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FIG. 16. Error versus time step in logarithmic scale for all algorithms. (a) RK2 scheme, (b) RK4 scheme.

guided search error reaches 10−6, becomes predominant, and the overall error saturates.
Finally, the guided search algorithm without error checking once again converges at a
considerably slower rate.

Figure 17 compares the average CPU cost per time step for each particle. As the time step
is reduced, the cost per step is also reduced for all schemes except the guided search without
error checking which demonstrates a relatively time step independent speed. The reason
for the dependence of the other scheme is the reduction in boundary intersections and their
corresponding searching and iterative procedures. Unlike in the previous analytic domain
computations, the particles now do not necessarily remain within the curved prismatic
element close to the domain walls and so we do not see the very large difference between
the guided search (ε= 10−6) and hybrid algorithms over the physical space algorithm for

FIG. 17. Average CPU time per particle per time step in seconds as a function of time step for all algorithms.
(a) RK2 scheme, (b) RK4 scheme.
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large time steps. Using a time step of1t = 0.2, the guided search without error checking
is more than five times faster for both the RK2 and RK3 schemes but is inaccurate. As
the time step is reduced, the guided search (ε= 10−6) and hybrid algorithms demonstrate
a faster reduction in CPU time than the physical space algorithm. This is to be expected
since the number of Newton–Raphson iterations required at each substep is also reduced.
With a time step of1t = 0.002, the hybrid algorithm is 2.6 times faster than the physical
space algorithm for both the RK2 and RK4 schemes. At this time step, the guided search
(ε= 10−6) is 1.6 and 1.9 times faster than the physical space algorithm for the RK2 and RK4
schemes, respectively. The better error of the hybrid algorithm over the guided search, with
and without error checking, and a CPU cost which lies in between these schemes clearly
makes this the most attractive approach to particle tracking independent of the Runge–Kutta
scheme.

7. CONCLUSION

This paper has discussed alternative approaches to calculate particle trajectories using
high-order spatial approximations on unstructured meshes and a Runge–Kutta integration
in time. The Runge–Kutta schemes presented here have used a fixed integration time step.
The role of variable time stepping has not been discussed but all these schemes could be
combined with different temporal strategies to introduce time step error control such as
embedded Runge–Kutta methods with local extrapolation [9].

Particle tracking algorithms on high-order meshes that use either the physical space or the
parametric space rely on nonlinear procedures to calculate the trajectories. This increases
considerably the calculation cost when compared with such implementations using meshes
of linear elements.

To reduce the computational cost, a novel alternative hybrid approach has been proposed.
This scheme advances a particle in both the physical and the parametric space within an
element and uses a linear searching algorithm, theguided search, to move across elements.
The guided search utilizes piecewise linear trajectories based upon the linear substeps of the
Runge–Kutta schemes and therefore does not require nonlinear iterations. We have shown
that this procedure is exact for elements with a constant Jacobian of the elemental mapping.

The guided search has been implemented in conjunction with particle tracking schemes
using the physical or parametric spaces, and their performance has been assessed using a
set of analytical and computational, linear and high-order, velocity fields.

For particle tracking in the physical space, it has been found that the guided search
could provide reasonable estimates of the final position of the particle which, combined
with suitable error checking, can produce a two- to threefold increase in speed on model
problems. However, the best approach is obtained by combining particle tracking in the
parametric space with a guided search using the velocity in physical space across boundaries.
This scheme has also shown between a two- to threefold speed-up in both analytical and
geometrically complex model problems.
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